Developing Reusable Device
Drivers for MCUs

BENINGO
EMBEDDED GROUP

Jacob Beningo
jacob@beningo.com

A=
Social Links: ¥ m

mailto:jacob@beningo.com
https://twitter.com/Jacob_Beningo
http://www.linkedin.com/in/jacobbeningo
http://www.beningo.com

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

Table of Contents

Contents

INEFOTUCTION 1.ttt e s e st e st e s b et e s bt e e smb e e sabeesabeesabeeeameeesmneesaneess 2
D14V T N @lo o [@ 15T g1 2 T u 1o o FU USRS 2
Application Programming INTErface (AP1)cceiiiiiiieecee ettt et e st e e s te e erbaeestbe e saaeesaseessaesaraeenes 3
oYL T AN = 1Y PP P PPN 4
(0o T0) 11 ={V = Yu o] o =1 o] [T U ER 6
Digital INPUL/OULPUL DIVEE DESIBN ...eeivieitieitieiteesieeitieseesteeseesteesteesteestaestaesseessaessaessaesasesssesssesssesssesssessesaeans 7
Serial Peripheral Interface (SPI) Driver DESISN.....ccccuuiiiiciieeeeiiieeeeitee e st e e eetee e e seite e e ssateeesssraeesssnteeeessaeeesanes 12
(6o o Tol [V o] o FO TSP PSP PP P PP PRRPPRRPPO 20
Introduction

The rate at which society expects products to be released and refreshed has steadily increased over the
last two decades. The result has left development teams scrambling to implement the most essential
product features before the launch date. Designing a new product from scratch takes time, effort, and
money that is often unavailable.

Embedded software developers often look to chip manufacturers to provide example code and processor
drivers to help accelerate the design cycle. Unfortunately, the provided code often lacks a layered
architecture that would allow the code to be easily reused. In addition, the code is often sparingly
documented, making fully understanding what is being done difficult. The result is poorly crafted code
that is difficult to read and comprehend and offers no possibility of reuse with the following product.
Time and effort are forced to focus on developing low-level drivers rather than implementing the
product features.

This paper will explore methods and techniques that can be used to develop reusable abstracted device
drivers that will result in a sped-up development cycle. A method for driver abstraction is examined in
addition to a brief look at crucial C language features. A layered approach to software design will be
explored with common driver design patterns for Timers, 1/0O, and SPI. This can then be expanded upon
to develop drivers for additional peripherals across a wide range of processor platforms.

Driver Code Organization

There are many different ways in which software can be organized. Nearly every engineer has their own
opinion on how things should be done. In this paper, the software will be broken up into driver and
application layers to create drivers and reusable design patterns. The primary focus will be on the driver
layer with the intent that the same basic principles can be applied to higher layers.

2

© 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

Developing Reusable Device Drivers for MCUs EMBEDDED GROUP

As expected, the driver layer will consist of peripheral interface code; however, the drivers will attempt
to remain generic to the peripheral. This will allow them to be used and configured for various
applications. The driver layer can be compiled into a separate library that can be dropped into any
project. The configuration for each driver would be contained within configuration modules that would
be part of its layer. Each application can uniquely configure the driver and layers to match the
requirements. Figure 1 shows how the configuration and driver code would be organized.

Application
Application

Driver Library

Hardware

Figure 1 — Layered Organization

Application Programming Interface (API)

One of the most critical steps in developing a reusable driver framework is to define the Application
Programming Interface (API). Properly defining the APIs allows for a standard interface to be used to
access hardware across multiple platforms and projects. This is something that high-level operating

systems have done relatively well over the years.

These APIs can be defined in many possible ways and are often dictated by programmer preferences.
For this reason, the developed APIs should become part of the development teams’ software coding
standard. The end goal is to define the APIs in a way that meets the system's general requirements but
allows each peripheral's power to be fully utilized.

There are software APIs available that can provide a starting point. Adopting formats used by the Linux
kernel, Arduino libraries, AUTOSAR, or a custom driver API that is a mix is possible. It doesn’t matter,
provided the format is well-documented and used across all platforms and projects.

Defining the APIs for common and useful features for each peripheral is helpful. Each peripheral will
require an initialization function and functions that allow the peripheral to perform its functions. For
example, Listing 1 shows a possible Digital Input/Output driver interface. It consists of initialization,
read, write, and toggle functions.

void Dio Init(conat Dio Configlype *Config):

BOOL Dic ReadChannel (Dio ChannelType Channel) ;

vold Dic WriteChannel (Dic ChannelType Channel, BOOL State)
vold Dioc_ToggleChannel (Dioc ChannelType Channel) ;

Listing 1: Digital Input/Output API

© 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

The Serial Peripheral Interface (SPI) and EEPROM APIs are below in Listing 2 and Listing 3. These are the
example interfaces that will be used in this paper.

volid Spi_Init(conat Spi ConfigType *config);

vold Spi_Transfer (conat Spi_TransferType *config);

Listing 2: Serial Peripheral Interface API

vold Eep Init(conat Spi TramsferType *config);
volid Eep Read(uint8 *Dest, uint3Z S5rc, uint3Z Size);
vold Eep Write (uint3Z2 Dest, uints8 *Src, uintlé Size);

volid Eep PageErase (uint3Z Deat);

Listing 3: EEPROM API

In these examples, the coding standard typically uses a three-letter designation to indicate the peripheral
or board support interface followed by a single underscore. The underscore precedes the interface
function. Each word is capitalized to ease the readability of the code.

It should be noted that uint8, uint16, and uint32 are, respectively uint8_t, uint16_t, and uint32_t. The
author has found that it is fairly obvious what these types are, and continually writing “_t” after every
type doesn’t have any added value. This is open to personal interpretation but is the convention that
will be used throughout the rest of this paper.

Pointer Arrays

One of the fundamental issues in driver design is deciding how to map to the peripheral registers. Over
the years, many different methods have been used, such as setting up structures to define bit maps or
simply writing the desired value to the register; however, my all-time favorite method is to create an
array of pointers that map to the peripheral registers. This method offers an elegant way to group
peripheral registers into logical channels and provides a simple method to initialize the peripheral and
access its data.

The pointer array method is easily ported and can be used to create standard APIs and application code
that can work across different hardware platforms, allowing for application code to be shared. If properly
written, it also produces code that is far easier to read and understand, making software maintenance
easier.

The concept of pointer arrays is a relatively straightforward method for mapping to a peripheral. The
idea is to create an array where each index of an array is a pointer to a peripheral register of a particular
type. For example, for a microcontroller with multiple GPIO ports, a pointer array would be set to access
the direction registers of each available port (Listing 4). Another pointer array would be set up to access
the input and output registers. Each register type would be associated with its own pointer array.

"

© 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

* Defines a table of pointers to the ports data direction register on the
* microcontroller.
*

uintle wolatile * const portsddr [NUM PORTS] =

uintlé*) sTRISE, (uintlé*)&TRISC, (uintlée*) sTRISE,
uintle*) sTRISE, (uintlé*)sTRISE, (uintlée*)sTRISE

Listing 4: Pointer Array for GPIO

It is essential to take note of how the pointer array is declared. The pointer array portsddr is a constant
pointer to a volatile uint16. Notice that the declaration is defined from right to left. The pointer to the
register is a continual pointer but declaring it as a volatile uint16 notifies the compiler that the value
being pointed to may change on its own without interaction from the software.

There are many advantages to using this approach to memory mapping. First, it allows registers of the
same function to be logically grouped. This allows the software engineer to view each peripheral as a
separate channel of the MCU. For example, timer 1 and timer 2 could be looked at as being two different
timer channels.

To set up the period register of each timer would only require a simple write to the proper channel index
of the period pointer array. The index of the pointer array then becomes a channel access index. For
instance, pointer array index 0 would be associated with Timer 1; pointer array index 1 would be
associated with Timer 2.

Next, when the peripherals start to look like channels, creating an abstract method of initializing and
accessing each peripheral data becomes easy. This allows a simple loop to initialize each peripheral
(Listing 5). It will enable the data of the peripheral to be accessed by simply using the correct channel
index. This results in a driver framework that is not only easy to understand and reuse but also a
framework that abstracts the device registers.

{ Initialize each channel to =zero.
forii=0; i < NUM _TIMERS; i++

*tmrreq[i] = 0; f/Clear timer register

Listing 5: Timer Initialization Loop

Finally, it allows the developer to create configuration tables for each peripheral. Instead of always
writing custom initialization code, the developer can create a reusable driver that takes the configuration
table as a parameter. The initialization function then loops through the table one channel at a time and
initializes the peripheral registers through the pointer array. This allows the driver to become a library
module that is repeatedly tested, resulting in proven code that can accelerate the next project.

© 2023 Beningo Embedded Group, All Rights Reserved 5

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

Configuration Tables

Memory mapping microcontroller peripherals using pointer arrays allows the peripheral to be viewed as
a collection of channels that can be configured through an index in a loop. By taking this generic
approach to memory mapping, a technique is needed to control precisely what is put into the registers.
Configuration tables serve as a valuable tool for this exact purpose.

A configuration table is precisely what it sounds like - a collection of channels and values configuring a
peripheral. The most helpful way to define a configuration table is to create a typedef structure
containing all the fields needed to set up each channel. Start by examining the peripheral registers of
interest. For example, reading the timer peripheral may determine that the configuration table should
include channel, period, and control fields. The table elements can then be defined by the structure
shown in Listing 6.

typedef struct

uint8 TimerChannel;

uint8 volatile Pericd;

uint8 volatile Control;
Tmr_ ConfigType:;

Listing 6: Configuration Table Definition

The Tmr_ConfigType defines all the data required to set up a single-timer peripheral. Since most
microcontrollers contain more than a single timer, an array of Tmr_ConfigType would be created with
each array index representing a channel (a single-timer module). Before a configuration table can be
defined, it is helpful first to define channel types for the table. The channel will access indices in an array
that belongs to that channel, allowing the application code to manipulate that particular timer.

T

* This enumeration is a list of the timer channels
&

typedef enum

TIMERI, F¥%< Timer

1 */
TIMERZ, Fows Timear 2 %/
NUM TIMERS FE**< Number of timers on the microcontroller */f

}Tmr_ChannelTlype;

Listing 7: Timer Channel Definitions

In Listing 7, a typedef enumeration creates the channel names. Since enumerations start at 0 (in C
anyway), TIMER1 can access index 0 of an array containing information about TIMER1. NUM_TIMERS
then holds the value for the number of available timers. This can be used in the driver initialization to
loop through and configure each channel up to NUM_TIMERS.

6

© 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

Developing Reusable Device Drivers for MCUs EMBEDDED GROUP

Once the channel type has been defined, filling in the configuration table with the values used to
configure the timers is possible. Listing 8 shows an example configuration table based on the
Tmr_ConfigType structure. The configuration table is defined as a const since the configuration data will
not change during run-time. This will allow the configuration tables to remain in Flash and not take up
valuable space in RAM. Each channel is listed along with a period and a control register value. If a clock
module were developed, it would be possible to use a time in microseconds instead of a period. The
timer module would then use the clock module to correct the period register.

T
* This configuration tabkle iz used to configure the behavior and function of

* the timers.
.

conat Tmr Configlype Tmr Configl] =

Timer Timer Control Begister
Channel Periocd Attributes
{TIMERI, 20000, a0
{TIMERZ, 2000, i

Listing 8: Configuration Table Example for 2 timers

If Listing 8 were being used within an actual project, the period values would correspond to the number
of ticks of the timer required before an interrupt or some other helpful system event would occur. The
control register attributes would be representative of different registers that would require setup. It
would be possible to include enabling and disabling interrupts for each timer and controlling the
interrupt priority. Items included in the configuration table may vary from peripheral to peripheral based
on what the manufacturer supports features. Each table's process, design pattern, and look would be
similar and familiar, leaving little guesswork regarding configuring the module.

Digital Input/Output Driver Design

General Purpose Input / Output or Digital Input / Output is one of the most fundamental peripherals on
every microcontroller. However, figuring out how the devices’ pins are configured in most applications
can be a nightmare. They are usually configured as shown in Listing 9, except that instead of only
displaying four registers, there are hundreds of them! This definition was acceptable when devices only
had 8-bit ports and only one or two per device. However, today, microcontrollers can have 100’s of pins
which need to be configured. This is why we will examine an approach to pin mapping using arrays of
pointers. At the end of this section, you will find that this method proves far more manageable to
determine the configuration of a pin once the work has been put in front.

TRISE = 0OxdZ;
TRISE = 0x71;
BORTE = 0x05;
BPOETE = 0Oxl4;

Listing 9: Example 1/0 Configuration

© 2023 Beningo Embedded Group, All Rights Reserved 7

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

The first step that should be performed when developing the digital input/output driver is that the
device registers should be examined in the datasheet. While there are standard features across
manufacturers and chip families, features do vary.

Next, write down a list of all the features that should be implemented in the driver. Some example
features for a digital input/output driver are pin direction, initial state, and the function the pin will
serve, such as GPIO, SPI, PWM, etc. Once this list has been compiled, it can be put into a configuration
structure, as shown in Listing 10.

i

* Defines the digital input/output configuration table elements that are used
* by Dio Init to configure the Dioc peripheral.

=

typedef atruct

uint8 Channel; f*%*< The I/0 channel * i
uint8 PinType Z; f*%*< Set Pin Type — BANATOE, DIGITAL,etc i
uint8 Direction :1l; f**< Data Direction — OUTEUT or INEUT s
uint8 Data :1; J**< Data — HIGH or LOW s
uints2 Function Z2; f**< Mux Function — Dio_Peri Select *

(Dic ConfigType:

Listing 10: Digital 1/0 Configuration Structure

With the list of configuration parameters developed, the channel definitions are the only pieces missing
before the table can be filled in. These definitions can start as a generic list such as PORTA 0, PORTA 1,
etc. However, once in an application, it is far more convenient to label the channels with valuable
designations. For example, LED RED and LED BLUE would replace the generic label so the developer
knows exactly what output is being manipulated. An example channel definition in Listing 11 is a typedef
enumeration.

* This enumeration iz a list of the general purpose I/0 pin channels. They
* are used by the by the Dio functions for reading and writing to the

* digital pins.

- S

typedef enum

LED REL, fo*< BPORTR 0 */

EEP C5, Se% PORTR 1 */

MOSI, fwes PORTR 2 =*f

MISG, f**< PORTR 3 */

CLE, f**< PORTR 4 */

FORTR 5, f*=< PORTIR 5 */

PORTRE &, f**< PORTR & *

PORTR 7 fo*< BPORTR 7 */

HUM DIGITAL PINS /**< Humber cof digital pins */

1Dio ChannelType; |

Listing 11: Digital 1/0 Channel Types

Once the channels have been defined, it is straightforward to generate the configuration table. Create a
const array of type Dio_ConfigType and start populating how each channel (pin) should be configured.

8

© 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

For instance, for the LED_RED channel, the pin should be configured as a digital pin, with the direction of
OUTPUT and an initial state of HIGH. The pin function would, of course, be set to GPIO. A complete
example of the configuration table can be seen in Listing 12.

)
* This configuration table is used to configure the behavior and function of
* the digital i/fo. The channels are defined in dic cfig.h. The configuration
* consists of Pin Type (Bnalog or Digitael), Direction (IMPUT or OUTPUT), Initial
* pin state (LOW or HIGH), Function (GPIO, SPI, etco)
e 5
conat Dio ConfigTlype Dio Configl] =
! Initial
S Channel Pin Type Direction State Function
{LED REL, DIGITAL, OUTEUT, HIGH, EEIC SAPORTR O
{EEP_C5, DIGITAL, OUTEUT, HIGH, =FIC SAPORTR 1
{MOSI, DIGITAL, OUTIEUI, HIGH, SPI SFPORTIR 2
{MISC, DIGITAL, INEUT, HIGH, SEI S FPORTR =
[CLE, DIGITAL, OUTEUT, HIGH, SEI S/PORTR 4
PORTR 5, AMATOE, OUTEUT, LOW , EEIC S /PORTRE 5
PORTR &, DIGITAL, OUTEUT, LOW , =FIC S FPORTR &
PORIR 7, DIGITAL, OUTIEUI, LOW , EFIC S FPORTA 7

Listing 12: Digital 1I/O Configuration Table example

With the configuration table and channels defined, the next step in developing a digital input/output
driver is to memory map the peripheral registers to a pointer array. Once this is done, the initialization
function can be created. As a simple example, the code in Listing 13 assumes that the device is a single-
port device. The digital input register, digital direction register, and output state register are all mapped.
The final code creates an array allowing the driver to access an individual bit within a register based on
the pin number. For example, pin 3 would be accessed by bit 2 in a register, which is a 1 shifted to the
left by 2. The initialization function can simplify the code if these bit shifts are stored in an array.

© 2023 Beningo Embedded Group, All Rights Reserved 9

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

P
* Defines a table of pointers to the ports on the microcontroller.
-

uintlé wvolatile * conat portsin[HOM PORTS] =

uintle*) sPORTR

s

* Defines a table of pointers to the ports data direction register on the
* microcontroller.

*

uintlé wvolatile * conat portsddr [NUM PORTS] =

uintle*) sTRISE

s
* Defines a table of pointers to the ports latch register on the
* microcontroller

*

uintlé wvolatile * conat ports [HUM PORIS] =

uintle*) sLATR

s

* Defines a table of pins for the microcontroller.
-

conat uintlé pins[NUM PINS PER PORI] =

1TL<<0), (1TL<<1}), (1UL<<2), (1UL<<3), (1UL<<4), (1TL<<5 1UL<<E), (1TL<<7

]

Listing 13: Pointer Array Memory Maps for Digital 1/0

After much preparation, the initialization function is finally ready to be written. It is relatively simple. A
pointer to the configuration table is passed to the function. A simple loop is used to set up each of the
pins. Each configuration value is read during each pass, and based on the value, a register is configured.
Listing 14 shows how each configuration value is recorded in the registers. As you can see, this code is
straightforward and easily re-used. The only change is that the pointer array must be updated for the
correct records. Minor changes to how the analog pins are configured may be necessary, but as long as
the APl is followed, application code can be reused from one processor to the next.

10 © 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

Developing Reusable Device Drivers for MCUs EMBEDDED GROUP
._,I'kkkﬁ-kkkkkkkﬁ-kkkkkﬁ-kﬁ-kkkkﬁ-kkﬁ-kkkkkﬁ-kﬁ-kkkkkﬁ-kﬁ-kkkkﬁ-kﬁ-kkkkkkkﬁ-kkkkkkkﬁ-kkkkkkkﬁ-kkk
* Function : Dic_Init()

e
* “gection Description Description:
]
* This function is used to initialize the Dio based on the configuration table
* defined in dic_cfg module.
el
* “Zparam - const Dic ConfigType * Config — pointer to the config table.
el
* “Zreturn None
el
ﬁ-kﬁ-kﬁ-kkkkﬁ-kkﬁ-kkkkkﬁ-kﬁ-kkkkkﬁ-kﬁ-kkkkkkkﬁ-kkkkkkkﬁ-kkkkkkﬁ-kkkkkkkﬁ-kkkkkkkﬁ-kkkkkkkﬁ-kkk:{
vold Dic Initiconsat Dic ConfigTlype * Config)
{
uint8 i = 0;
uintf® number = 0; S Port Number
uint8 position = 0; S Pin Humber
S/ Loop through all pins, set the data register bit and the data direction
Srlregister kit according to the dio configuration table walues
for (i = 0; i < MUM DIGITRL PINS; i++)
{
number = Config[i] .Channel / HNUM PINS PEER PORT:
position = Configli] .Channel % NUM PIMNS FER PORI;
SF Bet the AN pins as analog or digital
if (Config[i] .PinType = ANATOG)
{
ADIPCFEL &= ~pins[position];
}
elae if (Configl[i] .PinType == DIEITAL)
{
ADIPCEFEL |= pins[position];
}
Ff Bet the Data register kit for this channel
if (Configl[i].Data == HIGH)
{
*ports [number] |= pins[position];
}
elae
{
*ports [number] &= ~pins|[position]:;
}
Sf Bet the Data Direction register kit for this channel
if (Configl[i] .Direction == OUIEUT)
{
*portsddr [number] &=~ pins[position];
}
elae
{
*portsddr [number] |= pins[position];
}
}
}

Listing 14: Example Digital 1/0 Initialization Function

© 2023 Beningo Embedded Group, All Rights Reserved 11

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

A quick example of how to write an additional function would be helpful. In many applications, it is often
valuable to toggle an LED to see that the system is functioning. Listing 15 demonstrates how to access
the pointer array to toggle a channel.

e e e e e e e e e e e e e o o e o e e e e e e e e e o e e e e o e e e e e o e e o o e e o o e e e e o o e

* Functicn : Dic ToggleChannel ()
e S

* “Zgection Description Description:

* This functiom is used to toggle the wvalue of the specified digital ifo.
-

* Zparam -— uint8 Channel — the pin identifier.

Ll

* “Zreturn Hone .

e ke o e e e e e e e e o o e e e e e e e ke o o e e e e e e ke o o e e o e e e e ke o o e ol e e e e ke o o ol ol e e e e ke ke o o ol e e e o e ke e o e e e e e e e e e

wolid Dic ToggleChannel (Dioc ChannelType Channel

*ports [Channel /HNUM PINS PER PORT] ~= (1lUL<< (Channel*NUM PINS PER PORT)) ;

Listing 15: Digital 1/O Driver Definition

The usage for this function is very straightforward. Simply pass one of the DioChannelType channels,
such as LED _RED. The function could be called at a rate of 500 ms.

Listing 16 demonstrates how other functions can be used along with the Dio_ToggleChannel.

Toggle the Bed LED
Dio ToggleChannel (REED LEL) ;

f¢f Turn on the Bed LED
Dig WriteChannel (RED LEL, O ;

Turn off the Bed LED
Dig WriteChannel (RED LEL, OFF);

Listing 16: Digital 1/O Functions

Serial Peripheral Interface (SPI) Driver Design

The serial peripheral interface (SPI) is commonly used. It consists of three communication lines in
addition to a chip select line. It is often used to communicate with EEPROM, SD cards, and other
peripheral devices. Most SPI interfaces can reach speeds over 4 Mbps.

Like the Digital I/O driver, the first step to developing an SPI driver will be establishing the configuration
table. An example configuration structure can be found in Listing 16.

12 © 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

Developing Reusable Device Drivers for MCUs EMBEDDED GROUP

Sl

* Defines the configuratiom data required to initialize the 5PI peripheral.
*

typedef struct

uintf ChannelName; f**< defines the name of the 5PI channel i
uint8 SpiEnable; f**< defines the whether the 5PI channel i3 enabled s
uints Master Mode: f**< defines the peripheral Master/5lave mode s
uintle BaudBRate; F**< defines the bazud rate *
uintf CommSelect; f**< defines the Word/Byte communication select bit *

}8pi_ ConfigType:

Listing 16: SPI Configuration Table Definitions

Depending on the part being used, there may be more than a single SPI channel per chip. In Listing 17, a
Spi_ChannelType enumeration defines the possible SPI channels. These channels can access the pointer
arrays and control the application's behavior.

FET

* This enumeration defines a list of the spi channels
.

typedef enum

SPT_1, fe*< SPI 1 =/
5PI_z, jev< SPT 2 */
HUM SPI_CHANNELS f*%< Number of S5PI channels */

15pi ChannelType;

Listing 17: SPI Channel Definitions

Several features are standard to SPI peripherals configured by the configuration table. SPI allows the
processor to behave as a Controller, which controls the communication with a target device. It also
allows the processor to be configured as the target device. If there is more than a single SPI channel,
each channel's baud rate can be individually configured, and the width of each communication data
chunk.

Listing 18 shows how a two-channel SPI processor could be configured. In this example, the first SPI
peripheral is enabled during start-up as a controller device with a baud rate of four Mbps. Each
communication with a target device occurs in byte communication. The second channel is disabled at
start-up, but it would act as a target device if it were enabled during operation. A target device requires a
chip select to clock in data. The target channel would be configured to expect a baud rate of 400 kbps
and receive the data in 2-byte data chunks.

© 2023 Beningo Embedded Group, All Rights Reserved 13

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

T

* This configuration table is used to configure the behaviocr and function of
* the spi channels. The channels are defined in spi cfg.h.

-

e e ke e e e e ol ke e ol e e e ke e e ol e e e e e e e ol ke e e e e e e ke e e e e e e e e e e ke e e e e e e e e e e e e e e e e e ok e e e e e e e e e e e e e e e e

conat Spi_ ConfigTlype Spi Configl]l =

5PI Channel Communication
Channel Enable Master Mode Baud Bate Selection
{8PI_1, ENABLEL, MRASTER, SPI_BRUD 4M, BYTE WIDE},
{5PI_2z2, DISRAELEL, SLAVE, SPI_BARUD 400E, BYTE BYTE}

Listing 18: SPI Configuration Table Example

There are only a couple of functions that are necessary to get an SPI driver up and running. The first is
the initialization function. The second is a transfer function that sends out and receives data. The
Spi_Init function would accept a pointer to the configuration table. The Spi_Transfer function would also
get a pointer to a configuration table. Listing 19 shows the prototypes for these functions.

vold Spi_Init (conat Spi_ConfigTlype *config):

void Spi_Transfer (conat Spi TransferType *config);

Listing 19: SPI Function Prototypes

There is a significant difference between the configuration tables each function takes for parameters.
The Spi_Init configuration initializes the peripheral from a general standpoint, for example, the
peripheral baud rate. The Spi_Transfer configuration describes how a particular device will communicate
over SPI. For example, two different SPI target devices may be set up to communicate differently. One
may be an active low chip select with a particular phase and clock polarity, while another device may be
the opposite. In this case, Spi_Transfer allows each device to be set up with the same SPI channel and
each data transfer configured as required. Listing 20 shows some examples of what might be found in
the configuration structure.

The Spi_Init function would be written in the same manner as the digital input/output initialization.
Pointer arrays would be declared, and the initialization would loop through each channel, setting up the
registers per the configuration table. The Spi_Transfer function is far more interesting to take a look at. It
consists of several steps to send data properly.

The first step of the Spi_Transfer function is to configure the SPI peripheral for communication. This is
usually done by first resetting the peripheral. This aims to clear out any old transfer data and prepare the
peripheral for new configuration data. Next, the clock phase and polarity are configured. The transfer
mode (Controller or Target) is set up before enabling the SPI peripheral. This can be seen in Listing 21.

14 © 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

f e
* The 5PI Transfer Type structure is used to set the configuration for
* transmitting S5PI data.
-

typedef struct

uint8 SpiChannel; f**« The spi channel to be used */

uint8 ChipSelect; f**« The dioc channel to be used for C5 */
uint8 Cs_Polarity: f**%< The active atate of C5 */

uintlé NumBytes; F*%< The number of bytes to send */

uintd *TxRExData; fS**< Pointer to the data to transfer */
uint8 Polarity:1; f**< Tranafer data polarity */

uint8 Phase:l; f**< Tranafer data phase */

uint8 Directiomn:1; f**< Bit direction */

}15pi_TramsferType;

Listing 20: SPI Transfer Configuration

At this point, the peripheral is configured and ready to send data. In this example, the SPI is configured
as a controller. This means that the processor controls the communication on the bus. To talk to a target
device, the chip selection must be toggled to tell it to prepare to receive data. Chip selects can be either
active high or active low. The configuration data determines which is correct to communicate with this
target device, and the chip select is active. Listing 22 shows an example function that can be used to set
a target device into active mode. Listing 23 shows the opposite function used to put the target in an
inactive state.

© 2023 Beningo Embedded Group, All Rights Reserved 15

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

e e e e e e ke e e ke e o e e e e e e e o o e e e e e e e ke o e e e e e e e ke o o e e o e e e e ke o ol ol o e e e e ke o o ol e e e e e ke ok o o ol o e e o e ke o e
* Functicon : Spi_Setup|()

T

* “gection Description Descriptiomn:

-

* This function is used to configure the 5PI peripheral to communicate with

* & particular slave device.

* “Zparam - const Spi Tranaferlype * config

* \return Hone
&

kkkkkkk#kkkkkkkkﬁ-kkkkkkk*#kkkkkkk#kkkkkkkk#kkkkkkk*#kkkkkkk*kkkkkkkk#kkkkkkk*#k;

inline woid Spi_Setup (conat Spi TranaferType * config)

{
f/Beset the module. This disables 5PI and clears any flags but retains any
S fourrent register settings for the 5PI peripheral.
*apistat [configq-»5piChannel] &= ~REGBITI1S;

e ok ke e e e e ol e kel e e e e e e e ol ke e e e e e e ol e ol e e e e e e e ol e ol e e e e e ol ke e e e e e e e e ol e e e e e e ol ol e e e e e o ol o e o e e

* Set the polarity, phase, and shifter direction (L5Bit firat or M5Bit firsat)
* based on the configuration. Set for master mode and enable the 5PI.
* Disakle 5PI Interrupts.
kkkﬁ-kkkkkkkkﬁ-kkkkkkkﬁ-ﬁ-kkkkkkkﬁ-kkkkkkkkﬁ-kkkkkkkﬁ-ﬁ-kkkkkkkﬁ-kkkkkkkkﬁ-kkkkkkkﬁ-ﬁ-kk.l,l'
f/5et the spi channel polarity
if (config->Polarity = POLRRTITY HIGH)
{

*gpiconl [config->5piChannel] |= REGBITE&;
}

elae

{
~REGBITE;

[
]

*gpiconl [config->5piChannel]

f/5et the spi channel phase
if lconfig-*Phase == PHASE HIGH)
{
*gpiconl [config->5piChannel] |= REGBITS;
}

elase

{
*spiconl [config->5piChannel] &= ~BREGBITS;

*apiconl [config-*5piChannel] |= BEGBITS; fF#8et 5PI channel to master mode
*apistat [config-*5piChannel] |= BEGBIT1S; f/Enabkle the spi module

void) *spibuf [config->*5piChannel] ; fF Perform dummy read to clear the buffer

Listing 21: SPI Transfer Peripheral Setup Function

16 © 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

Developing Reusable Device Drivers for MCUs EMBEDDED GROUP

e o e e ol e e e e ke ok e e o o e e e e e e e ke o o ol ol e e e e ke e e e ke o e e o e e e e ke ke e ke o o e e e e e e e ke o ol e ol o e o e e e e e ke o o ol o e e

* Function : Spi_ Setlsa()
e

* ‘Zgection Description Description:
-

* This function is used to select a slave device. It toggles an IS0 line
* into the active state.

* Zparam - const Spi TransferTlype * config
el

* Zreturn Hone _
-

W e e e e e e e e e o e e e e e e o e e e e e e o e o e e e e e o o e e e e e o o e e e e e o e e e e e e e e e e e e

inline Spi_ SetCa(conat Spi_TranaferType * config

f/85elect the device
if (config->Cs_Polarity == C5_ACTIVE LCOH

Dio_WriteChannel (config->ChipSelect, LOW);
elas

Dio WriteChannel (config->ChipSelect, HIGH):

Listing 22: SPI Target Chip Select Active Function

© 2023 Beningo Embedded Group, All Rights Reserved 17

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

-

-

-

-

-

-

Function - 5pi ClearCs()

L

“gection Description Description:

This function is used to de—-select a slave device.

into the inactiwve state.

‘\param -— conat Spi_ TranaferType * config

“return Hone .

inline S5pi ClearCs(const Spi_TransferType * config

A e A R R A R R A R R R R R A R R A R A R R R R R R R Rk R

It toggles an IS0 line

dhe ke o e e e e ke e e ke o o e e e e e e e e o e ol o e e e e ke o e ol e e e e e ke ol e e e e e e e e e e e ke o e e e e e e e ke o o ol ol e e e e ke ke o e e e e e e e

S/ Latch the data into the slawve by de-selecting the chip select.

if lconfig-*Cs_Polarity == C5_ACTIVE_LOW
Dio WriteChannel (config->ChipSelect, HIGH);
elae

Dio WriteChannel (config->ChipSelect, LOW);

Listing 23: SPI Target Chip Select Inactive Function

The data is then transferred one chunk at a time to the target device; however, before data is

transferred, the order of the bytes and bits must be set. Some devices expect data LSB to MSB while
others MSB to LSB. This is part of the configuration. If required, the Spi_Transfer function reorders the
bytes and transmits them. A new chunk of data is read at the end of each piece of data. Once all the data
has been sent, the chip select is cleared, and the data transfer is complete. The final Spi_Transfer

function can be found in Listing 24.

© 2023 Beningo Embedded Group, All Rights Reserved

BENINGO

Developing Reusable Device Drivers for MCUs EMBEDDED GROUP
._,fkkﬂ-ﬁ-k&ﬁ-Arﬂ-l-Arﬁ-l-Arﬁ-l-kﬁ-&kﬁ-&ﬁ-A.-l-ﬁ-Arﬁ-ﬁ-Arﬁ-ﬁ-ﬁ-kﬂ-ﬁ-kﬂ-ﬁ-A.-ﬂ-i-kk#kk#ﬁ-kﬂ-ﬁ-kﬂ-kk&#kk#kk#kk&kk&kk&#kk#k
* Function - S5pi_Tranafer()
ST el
* Ygection Description Description:
e
* This function is used to transfer data through the S5PI peripheral.
-
* Zparam - conat S5pi_TranaferType * config
&
* “Zreturn None .
e
l-ﬁ-ﬁ-&ﬁ-ﬁ-&ﬁ-A.-l-ﬁ-Arﬁ-ﬁ-Arﬁ-ﬁ-ﬁ-kﬂ-ﬁ-kﬂ-ﬁ-A.-ﬂ-i-Arki-Arki-kkﬂ-ﬁ-k&ﬁ-Arﬂ-l-Arﬁ-l-Arﬁ-l-kﬁ-&kﬁ-&ﬁ-A.-l-#kk#kk#kk&kk&kk&#kk#k:{
volid Spil_Transfer (const Spi TransferType * config)
{
uintd i = 0; A4 loop index (ranges from 0 to NumBytes)
uintd j = 0; 44 data pointer index
f4 Betup the spi registers with the spi devices communication settings
Spi_Setup (config)
S Initialize the Chip Select
Spi_ChipSelect (config);
._,I'kﬂ-ﬁ-Arﬂ-l-Arﬁ-l-Arﬁ-l-ﬁ-ﬁ-&kﬁ-&ﬁ-A.-l-ﬁ-Arﬁ-ﬁ-Arﬁ-ﬁ-ﬁ-kﬂ-ﬁ-kﬂ-ﬁ-A.-ﬂ-i-Arki-kk#ﬁ-k&ﬁ-kﬂ-ﬁ-Arﬂ-#kk#kk#kk&kk&kk&#kk#kk#
* Transmit (and receiwve)] the data
kkhkkh#kk#kk#kkhkkhkkh#kk#kkﬁ-kkhkkhﬁ-kh#kk#kk#kkhkkhkkh#kk#kk#kkhkkhkkh#kk#kk:{
forli = 0; i < config->MumBytes; i++)
{
f4 Check the shift direction. If it is LEBit first then reverse the order
if (config-*Direction == 1)
{
j = config->MumBytes - i - 1; ff LEBit first selected. Beverse the index.
}
elae
{
J = i; S5 MEBit first selected. Normal index.
}
f4 Transmit the data to the slave device.
spibuf [config->5piChannel] = (|config->TxBxData + j));
S Wait for the transfer to complete then read the data from the slave device
while | (*spistat [config->5piChannel] & BREGBITO) == 0);
*config->TxBxDate + j) = “spibuflconfig->SpiChannel];
} /f End for
ff Clear the chip select since the data transfer is complete
S5pi_ClearCa (config);
1

Listing 24: SPI Transfer Function Example

© 2023 Beningo Embedded Group, All Rights Reserved 19

BENINGO

EMBEDDED GROUP

Developing Reusable Device Drivers for MCUs

Conclusion

Many methods can be used to develop device drivers. Using pointer arrays with configuration tables
opens up the possibility of developing reusable drivers that follow a design pattern that can be used
across not only families of processors but across platforms. Following these simple design patterns will
drastically speed up the driver design cycle, leaving more time for focusing on the application challenges
rather than low-level chip functions.

Keeping to standard driver APIs allows higher-level application code to be easily ported from one project
to the next. This continues to speed up the design cycle while increasing the components' quality.

20 © 2023 Beningo Embedded Group, All Rights Reserved

	Introduction
	Driver Code Organization
	Application Programming Interface (API)
	Pointer Arrays
	Configuration Tables
	Digital Input/Output Driver Design
	Serial Peripheral Interface (SPI) Driver Design
	Conclusion

