

Developing Reusable Device

Drivers for MCUs

Jacob Beningo
jacob@beningo.com

Social Links:

mailto:jacob@beningo.com
https://twitter.com/Jacob_Beningo
http://www.linkedin.com/in/jacobbeningo
http://www.beningo.com

2

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Table of Contents

Contents
Introduction ... 2

Driver Code Organization ... 2

Application Programming Interface (API) .. 3

Pointer Arrays .. 4

Configuration Tables .. 6

Digital Input/Output Driver Design .. 7

Serial Peripheral Interface (SPI) Driver Design... 12

Conclusion .. 20

Introduction
The rate at which society expects products to be released and refreshed has steadily increased over the

last two decades. The result has left development teams scrambling to implement the most essential

product features before the launch date. Designing a new product from scratch takes time, effort, and

money that is often unavailable.

Embedded software developers often look to chip manufacturers to provide example code and processor

drivers to help accelerate the design cycle. Unfortunately, the provided code often lacks a layered

architecture that would allow the code to be easily reused. In addition, the code is often sparingly

documented, making fully understanding what is being done difficult. The result is poorly crafted code

that is difficult to read and comprehend and offers no possibility of reuse with the following product.

Time and effort are forced to focus on developing low-level drivers rather than implementing the

product features.

This paper will explore methods and techniques that can be used to develop reusable abstracted device

drivers that will result in a sped-up development cycle. A method for driver abstraction is examined in

addition to a brief look at crucial C language features. A layered approach to software design will be

explored with common driver design patterns for Timers, I/O, and SPI. This can then be expanded upon

to develop drivers for additional peripherals across a wide range of processor platforms.

Driver Code Organization
There are many different ways in which software can be organized. Nearly every engineer has their own

opinion on how things should be done. In this paper, the software will be broken up into driver and

application layers to create drivers and reusable design patterns. The primary focus will be on the driver

layer with the intent that the same basic principles can be applied to higher layers.

3

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

As expected, the driver layer will consist of peripheral interface code; however, the drivers will attempt

to remain generic to the peripheral. This will allow them to be used and configured for various

applications. The driver layer can be compiled into a separate library that can be dropped into any

project. The configuration for each driver would be contained within configuration modules that would

be part of its layer. Each application can uniquely configure the driver and layers to match the

requirements. Figure 1 shows how the configuration and driver code would be organized.

Figure 1 – Layered Organization

Application Programming Interface (API)
One of the most critical steps in developing a reusable driver framework is to define the Application

Programming Interface (API). Properly defining the APIs allows for a standard interface to be used to

access hardware across multiple platforms and projects. This is something that high-level operating

systems have done relatively well over the years.

These APIs can be defined in many possible ways and are often dictated by programmer preferences.

For this reason, the developed APIs should become part of the development teams’ software coding

standard. The end goal is to define the APIs in a way that meets the system's general requirements but

allows each peripheral's power to be fully utilized.

There are software APIs available that can provide a starting point. Adopting formats used by the Linux

kernel, Arduino libraries, AUTOSAR, or a custom driver API that is a mix is possible. It doesn’t matter,

provided the format is well-documented and used across all platforms and projects.

Defining the APIs for common and useful features for each peripheral is helpful. Each peripheral will

require an initialization function and functions that allow the peripheral to perform its functions. For

example, Listing 1 shows a possible Digital Input/Output driver interface. It consists of initialization,

read, write, and toggle functions.

Listing 1: Digital Input/Output API

4

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

The Serial Peripheral Interface (SPI) and EEPROM APIs are below in Listing 2 and Listing 3. These are the

example interfaces that will be used in this paper.

Listing 2: Serial Peripheral Interface API

Listing 3: EEPROM API

In these examples, the coding standard typically uses a three-letter designation to indicate the peripheral

or board support interface followed by a single underscore. The underscore precedes the interface

function. Each word is capitalized to ease the readability of the code.

It should be noted that uint8, uint16, and uint32 are, respectively uint8_t, uint16_t, and uint32_t. The

author has found that it is fairly obvious what these types are, and continually writing “_t” after every

type doesn’t have any added value. This is open to personal interpretation but is the convention that

will be used throughout the rest of this paper.

Pointer Arrays
One of the fundamental issues in driver design is deciding how to map to the peripheral registers. Over

the years, many different methods have been used, such as setting up structures to define bit maps or

simply writing the desired value to the register; however, my all-time favorite method is to create an

array of pointers that map to the peripheral registers. This method offers an elegant way to group

peripheral registers into logical channels and provides a simple method to initialize the peripheral and

access its data.

The pointer array method is easily ported and can be used to create standard APIs and application code

that can work across different hardware platforms, allowing for application code to be shared. If properly

written, it also produces code that is far easier to read and understand, making software maintenance

easier.

The concept of pointer arrays is a relatively straightforward method for mapping to a peripheral. The

idea is to create an array where each index of an array is a pointer to a peripheral register of a particular

type. For example, for a microcontroller with multiple GPIO ports, a pointer array would be set to access

the direction registers of each available port (Listing 4). Another pointer array would be set up to access

the input and output registers. Each register type would be associated with its own pointer array.

5

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 4: Pointer Array for GPIO

It is essential to take note of how the pointer array is declared. The pointer array portsddr is a constant

pointer to a volatile uint16. Notice that the declaration is defined from right to left. The pointer to the

register is a continual pointer but declaring it as a volatile uint16 notifies the compiler that the value

being pointed to may change on its own without interaction from the software.

There are many advantages to using this approach to memory mapping. First, it allows registers of the

same function to be logically grouped. This allows the software engineer to view each peripheral as a

separate channel of the MCU. For example, timer 1 and timer 2 could be looked at as being two different

timer channels.

To set up the period register of each timer would only require a simple write to the proper channel index

of the period pointer array. The index of the pointer array then becomes a channel access index. For

instance, pointer array index 0 would be associated with Timer 1; pointer array index 1 would be

associated with Timer 2.

Next, when the peripherals start to look like channels, creating an abstract method of initializing and

accessing each peripheral data becomes easy. This allows a simple loop to initialize each peripheral

(Listing 5). It will enable the data of the peripheral to be accessed by simply using the correct channel

index. This results in a driver framework that is not only easy to understand and reuse but also a

framework that abstracts the device registers.

Listing 5: Timer Initialization Loop

Finally, it allows the developer to create configuration tables for each peripheral. Instead of always

writing custom initialization code, the developer can create a reusable driver that takes the configuration

table as a parameter. The initialization function then loops through the table one channel at a time and

initializes the peripheral registers through the pointer array. This allows the driver to become a library

module that is repeatedly tested, resulting in proven code that can accelerate the next project.

6

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Configuration Tables
Memory mapping microcontroller peripherals using pointer arrays allows the peripheral to be viewed as

a collection of channels that can be configured through an index in a loop. By taking this generic

approach to memory mapping, a technique is needed to control precisely what is put into the registers.

Configuration tables serve as a valuable tool for this exact purpose.

A configuration table is precisely what it sounds like - a collection of channels and values configuring a

peripheral. The most helpful way to define a configuration table is to create a typedef structure

containing all the fields needed to set up each channel. Start by examining the peripheral registers of

interest. For example, reading the timer peripheral may determine that the configuration table should

include channel, period, and control fields. The table elements can then be defined by the structure

shown in Listing 6.

Listing 6: Configuration Table Definition

The Tmr_ConfigType defines all the data required to set up a single-timer peripheral. Since most

microcontrollers contain more than a single timer, an array of Tmr_ConfigType would be created with

each array index representing a channel (a single-timer module). Before a configuration table can be

defined, it is helpful first to define channel types for the table. The channel will access indices in an array

that belongs to that channel, allowing the application code to manipulate that particular timer.

Listing 7: Timer Channel Definitions

In Listing 7, a typedef enumeration creates the channel names. Since enumerations start at 0 (in C

anyway), TIMER1 can access index 0 of an array containing information about TIMER1. NUM_TIMERS

then holds the value for the number of available timers. This can be used in the driver initialization to

loop through and configure each channel up to NUM_TIMERS.

7

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Once the channel type has been defined, filling in the configuration table with the values used to

configure the timers is possible. Listing 8 shows an example configuration table based on the

Tmr_ConfigType structure. The configuration table is defined as a const since the configuration data will

not change during run-time. This will allow the configuration tables to remain in Flash and not take up

valuable space in RAM. Each channel is listed along with a period and a control register value. If a clock

module were developed, it would be possible to use a time in microseconds instead of a period. The

timer module would then use the clock module to correct the period register.

Listing 8: Configuration Table Example for 2 timers

If Listing 8 were being used within an actual project, the period values would correspond to the number

of ticks of the timer required before an interrupt or some other helpful system event would occur. The

control register attributes would be representative of different registers that would require setup. It

would be possible to include enabling and disabling interrupts for each timer and controlling the

interrupt priority. Items included in the configuration table may vary from peripheral to peripheral based

on what the manufacturer supports features. Each table's process, design pattern, and look would be

similar and familiar, leaving little guesswork regarding configuring the module.

Digital Input/Output Driver Design
General Purpose Input / Output or Digital Input / Output is one of the most fundamental peripherals on

every microcontroller. However, figuring out how the devices’ pins are configured in most applications

can be a nightmare. They are usually configured as shown in Listing 9, except that instead of only

displaying four registers, there are hundreds of them! This definition was acceptable when devices only

had 8-bit ports and only one or two per device. However, today, microcontrollers can have 100’s of pins

which need to be configured. This is why we will examine an approach to pin mapping using arrays of

pointers. At the end of this section, you will find that this method proves far more manageable to

determine the configuration of a pin once the work has been put in front.

Listing 9: Example I/O Configuration

8

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

The first step that should be performed when developing the digital input/output driver is that the

device registers should be examined in the datasheet. While there are standard features across

manufacturers and chip families, features do vary.

Next, write down a list of all the features that should be implemented in the driver. Some example

features for a digital input/output driver are pin direction, initial state, and the function the pin will

serve, such as GPIO, SPI, PWM, etc. Once this list has been compiled, it can be put into a configuration

structure, as shown in Listing 10.

Listing 10: Digital I/O Configuration Structure

With the list of configuration parameters developed, the channel definitions are the only pieces missing

before the table can be filled in. These definitions can start as a generic list such as PORTA_0, PORTA_1,

etc. However, once in an application, it is far more convenient to label the channels with valuable

designations. For example, LED_RED and LED_BLUE would replace the generic label so the developer

knows exactly what output is being manipulated. An example channel definition in Listing 11 is a typedef

enumeration.

Listing 11: Digital I/O Channel Types

Once the channels have been defined, it is straightforward to generate the configuration table. Create a

const array of type Dio_ConfigType and start populating how each channel (pin) should be configured.

9

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

For instance, for the LED_RED channel, the pin should be configured as a digital pin, with the direction of

OUTPUT and an initial state of HIGH. The pin function would, of course, be set to GPIO. A complete

example of the configuration table can be seen in Listing 12.

Listing 12: Digital I/O Configuration Table example

With the configuration table and channels defined, the next step in developing a digital input/output

driver is to memory map the peripheral registers to a pointer array. Once this is done, the initialization

function can be created. As a simple example, the code in Listing 13 assumes that the device is a single-

port device. The digital input register, digital direction register, and output state register are all mapped.

The final code creates an array allowing the driver to access an individual bit within a register based on

the pin number. For example, pin 3 would be accessed by bit 2 in a register, which is a 1 shifted to the

left by 2. The initialization function can simplify the code if these bit shifts are stored in an array.

10

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 13: Pointer Array Memory Maps for Digital I/O

After much preparation, the initialization function is finally ready to be written. It is relatively simple. A

pointer to the configuration table is passed to the function. A simple loop is used to set up each of the

pins. Each configuration value is read during each pass, and based on the value, a register is configured.

Listing 14 shows how each configuration value is recorded in the registers. As you can see, this code is

straightforward and easily re-used. The only change is that the pointer array must be updated for the

correct records. Minor changes to how the analog pins are configured may be necessary, but as long as

the API is followed, application code can be reused from one processor to the next.

11

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 14: Example Digital I/O Initialization Function

12

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

A quick example of how to write an additional function would be helpful. In many applications, it is often

valuable to toggle an LED to see that the system is functioning. Listing 15 demonstrates how to access

the pointer array to toggle a channel.

Listing 15: Digital I/O Driver Definition

The usage for this function is very straightforward. Simply pass one of the DioChannelType channels,

such as LED_RED. The function could be called at a rate of 500 ms.

Listing 16 demonstrates how other functions can be used along with the Dio_ToggleChannel.

Listing 16: Digital I/O Functions

Serial Peripheral Interface (SPI) Driver Design
The serial peripheral interface (SPI) is commonly used. It consists of three communication lines in

addition to a chip select line. It is often used to communicate with EEPROM, SD cards, and other

peripheral devices. Most SPI interfaces can reach speeds over 4 Mbps.

Like the Digital I/O driver, the first step to developing an SPI driver will be establishing the configuration

table. An example configuration structure can be found in Listing 16.

13

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 16: SPI Configuration Table Definitions

Depending on the part being used, there may be more than a single SPI channel per chip. In Listing 17, a

Spi_ChannelType enumeration defines the possible SPI channels. These channels can access the pointer

arrays and control the application's behavior.

Listing 17: SPI Channel Definitions

Several features are standard to SPI peripherals configured by the configuration table. SPI allows the

processor to behave as a Controller, which controls the communication with a target device. It also

allows the processor to be configured as the target device. If there is more than a single SPI channel,

each channel's baud rate can be individually configured, and the width of each communication data

chunk.

Listing 18 shows how a two-channel SPI processor could be configured. In this example, the first SPI

peripheral is enabled during start-up as a controller device with a baud rate of four Mbps. Each

communication with a target device occurs in byte communication. The second channel is disabled at

start-up, but it would act as a target device if it were enabled during operation. A target device requires a

chip select to clock in data. The target channel would be configured to expect a baud rate of 400 kbps

and receive the data in 2-byte data chunks.

14

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 18: SPI Configuration Table Example

There are only a couple of functions that are necessary to get an SPI driver up and running. The first is

the initialization function. The second is a transfer function that sends out and receives data. The

Spi_Init function would accept a pointer to the configuration table. The Spi_Transfer function would also

get a pointer to a configuration table. Listing 19 shows the prototypes for these functions.

Listing 19: SPI Function Prototypes

There is a significant difference between the configuration tables each function takes for parameters.

The Spi_Init configuration initializes the peripheral from a general standpoint, for example, the

peripheral baud rate. The Spi_Transfer configuration describes how a particular device will communicate

over SPI. For example, two different SPI target devices may be set up to communicate differently. One

may be an active low chip select with a particular phase and clock polarity, while another device may be

the opposite. In this case, Spi_Transfer allows each device to be set up with the same SPI channel and

each data transfer configured as required. Listing 20 shows some examples of what might be found in

the configuration structure.

The Spi_Init function would be written in the same manner as the digital input/output initialization.

Pointer arrays would be declared, and the initialization would loop through each channel, setting up the

registers per the configuration table. The Spi_Transfer function is far more interesting to take a look at. It

consists of several steps to send data properly.

The first step of the Spi_Transfer function is to configure the SPI peripheral for communication. This is

usually done by first resetting the peripheral. This aims to clear out any old transfer data and prepare the

peripheral for new configuration data. Next, the clock phase and polarity are configured. The transfer

mode (Controller or Target) is set up before enabling the SPI peripheral. This can be seen in Listing 21.

15

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 20: SPI Transfer Configuration

At this point, the peripheral is configured and ready to send data. In this example, the SPI is configured

as a controller. This means that the processor controls the communication on the bus. To talk to a target

device, the chip selection must be toggled to tell it to prepare to receive data. Chip selects can be either

active high or active low. The configuration data determines which is correct to communicate with this

target device, and the chip select is active. Listing 22 shows an example function that can be used to set

a target device into active mode. Listing 23 shows the opposite function used to put the target in an

inactive state.

16

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 21: SPI Transfer Peripheral Setup Function

17

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 22: SPI Target Chip Select Active Function

18

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 23: SPI Target Chip Select Inactive Function

The data is then transferred one chunk at a time to the target device; however, before data is

transferred, the order of the bytes and bits must be set. Some devices expect data LSB to MSB while

others MSB to LSB. This is part of the configuration. If required, the Spi_Transfer function reorders the

bytes and transmits them. A new chunk of data is read at the end of each piece of data. Once all the data

has been sent, the chip select is cleared, and the data transfer is complete. The final Spi_Transfer

function can be found in Listing 24.

19

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Listing 24: SPI Transfer Function Example

20

Developing Reusable Device Drivers for MCUs

© 2023 Beningo Embedded Group, All Rights Reserved

Conclusion
Many methods can be used to develop device drivers. Using pointer arrays with configuration tables

opens up the possibility of developing reusable drivers that follow a design pattern that can be used

across not only families of processors but across platforms. Following these simple design patterns will

drastically speed up the driver design cycle, leaving more time for focusing on the application challenges

rather than low-level chip functions.

Keeping to standard driver APIs allows higher-level application code to be easily ported from one project

to the next. This continues to speed up the design cycle while increasing the components' quality.

	Introduction
	Driver Code Organization
	Application Programming Interface (API)
	Pointer Arrays
	Configuration Tables
	Digital Input/Output Driver Design
	Serial Peripheral Interface (SPI) Driver Design
	Conclusion

