
International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

DDOOII :: 1100..55112211//iijjsseeaa..22001122..33220055 5599

Application of UML in Real-Time Embedded
Systems

Aman Kaur

King’s College London, London, UK

Email: aman.kaur@kcl.ac.uk

Rajeev Arora

Mechanical Engineering Department, Invertis University, Invertis Village, Bareilly.

E-mail: rarajeevmanik@gmail.com

Abstract-

The UML was designed as a graphical notation for use with object-oriented systems and applications.

Because of its popularity, now it is emerging in the field of embedded systems design as a modeling

language. The UML notation is useful in capturing the requirements, documenting the structure,

decomposing into objects and defining relationships between objects. It is a notational language that is

very useful in modelling the real-time embedded systems. This paper presents the requirements and

analysis modelling of a real-time embedded system related to a control system application for platform

stabilization using COMET method of design with UML notation. These applications involve designing of

electromechanical systems that are controlled by multi-processors.

Keywords:

UML, embedded systems, platform stabilization

1. INTRODUCTION

In today’s world real-time embedded systems are everywhere. Often more or less unnoticed they

fulfill the task to control the behavior of technical systems in our homes, cars, offices, in the

hospitals and at various other places. In all these cases the complexity and number of functions

realized in software is increasing rapidly. Often these systems are still developed using older

software engineering technologies. As a consequence, it does not fulfill our expectations

concerning the needed quality for the real-time systems expressed in terms of reliability, security,

timeliness, maintainability, reusability etc. Furthermore, it often suffers from a separation of

functions and data as well as from the lack of well-defined subsystem boundaries with precisely

documented interfaces.

Because of the above, object-oriented and component-based methods are now a day’s more or

less accepted means for the development of embedded real-time system software. These methods

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6600

promise to facilitate the development, deployment, and reuse of software components with well-

defined interfaces. This line of development started at the end of the last millennium with the

announcement of the first generation of CASE tools that were able to generate code for embedded

system targets from high-level models e.g. defined in the Unified Modeling Language (UML).

UML is very useful in modelling the real-time embedded systems. There are thirteen diagram

types to describe various structural, behavioural and physical aspects of a system. The UML gives

only a set of notations and not a method. Certain notations in the UML have particular

importance for modelling embedded systems, like control system applications [1].

The platform stabilization is one of the typical control applications. These systems are multi-

disciplinary in nature which revolves around optical, electro-optical, mechanical and electronic

components. The basic functionality of these systems is to provide the user with a stable vision

output of the optical or electro-optical sensor in spite of the angular disturbances experienced by

the vehicle on which these sensors are mounted. To achieve this functionality, embedded systems

are developed which get the inputs from various sensors mounted on the platform, perform

control algorithms on these inputs and drive the motors from the corresponding outputs to

stabilize the platform against the vehicular disturbances. These embedded systems involve the

design of hardware as well as software components.

2. RELATED WORK

The traditional development process for embedded systems is usually cyclic. The engineer often

prototypes an algorithm, tests it on a specific hardware architecture, and then refines the software

to make most efficient use of the underlying hardware. If software is to be embedded, this type of

development can be very expensive and time consuming as performance analysis is done after

system components have been functionally tested and integrated.

These complexities of the embedded systems are increasing with the demand of more

functionality to be introduced in the systems with limited resources and short time-to-market

concepts at lower costs. These issues in turn can be handled by using the reusable components in

the systems which can increase the productivity and as well as the reliability. Already the model-

driven and component based approaches are being used in the development of real-time

embedded systems as compared to the traditional sequential approaches.

A system is represented in UML using multiple models through the 13diagrams types. Each

model describes the system from a distinctly different perspective. According to [2], at the top

level the following three kinds of views of a system are defined:

Structural Classification: In this view, the various objects or components and their

relationships with each other are considered. It represents the static view of the system through

class diagrams, use case view through use case diagrams, the implementation view through

component and deployment diagrams.

Dynamic Behaviour: It describes mainly the application’s dynamic behaviour i.e. the

behaviour over time. This view includes the state machine view through state machine diagrams,

the activity view through activity diagrams and the interaction view through sequence or

collaboration diagrams.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6611

Model Management: This view describes the organization of the system models into

hierarchical units. It uses the class diagrams to represent the organization. The model

management view uses the package construct to cross the other views and organises the

application’s models during development and configuration control.

Two types of views of the system i.e. static and behavioural one have also been described [3].

The static view of the system represents the entities in a system and the relationships among

them. The class diagrams, object diagrams, deployment diagrams and component diagrams are

used to construct the static model of a system. Behavioural views show how a system behaves

over time by showing the order of happening of things, the conditions under which these happen

and the interactions between them. The statecharts, use cases, sequence diagrams, collaboration

diagrams and activity diagrams are used to construct the behavioural model of the system.

Because of the increasing complexity of the systems, there are two main risks dominating in the

real-time systems design. The first one is the risk of functionality that is caused by incompletion

or misunderstanding the requirements from the user. The second one is the risk of performance. It

may arise from insufficient performance evaluation in the early stages of the design itself. As a

consequence, it does not fulfill our expectations concerning the needed functionality and

performance. These both things if uncovered or realized after the development of the system may

cause heavy costs to come back to the design of the system with required specifications.

To overcome these problems, object-oriented and component-based methods are now a day’s

more or less accepted means for the development of embedded real-time system software. They

facilitate the development, deployment, and reuse of software components with well-defined

interfaces [4]. Thus, By adopting the UML notation, development teams can communicate among

themselves and with others using a defined standard [1], [5], [6]. There are already some related

work reported in [7], [8], [9], [10] on application of UML to embedded systems design.

In this paper, we present the application of UML notation using COMET method into developing

the platform stabilization control system. In particular, we focused on requirements and analysis

modelling of the system. COMET [5] is a method for designing real-time and distributed

applications that integrates object-oriented and concurrent processing concepts and uses the UML

notation [11],[12].

3. CONTROL SYSTEM APPLICATION

A. Introduction

The platform stabilization is basically to reduce the jitter in the sighting systems introduced by

the vehicular motions. This is achieved by providing isolation between the sighting system and

the mounting platform. The platform stabilization techniques started with mechanical stabilizers.

These were the solutions without use of electronic systems. Now a days, electro-optical sighting

systems are used as payloads and electronic means are used to control the mounting platforms to

stabilize the same against vehicular disturbances. The systems contains various electro-optical

sensors for vision, gimbal mechanical assemblies, servo sensors for getting information about the

position of gimbals and rate of disturbances experienced by the mechanical assemblies on which

the EO sensors are mounted and embedded electronics to implement the signal conditioning of

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6622

signals, control algorithms, processing of controller outputs to drive the actuators & providing

various sub-system interfaces. These systems needs to be considered and developed using a well-

defined control software architecture. In addition to this, it also needs to develop and integrate the

platform stabilization system components in a systematic and comprehensive way as it involves

the interaction of the system with humans, the software and hardware components having many-

to-many relationships, the dependence of performance of the system on the architecture and reuse

of the components etc.

These systems interact with humans for getting the commands from them to operate the system in

various modes, displaying the gathered imagery data from the optical or electro-optical sensors,

informing the users about the health status of the system etc. Thus, well-defined control

architecture is required for coherently and systematically combining these services into an

integrated system. The block-level representation of the electronics architecture of the system is

shown in Figure 1.

Figure 1: Block diagram representation of the system.

B. Functioning of the System

The system can operate in various modes. The different servo sensors are used as input to the

control algorithm for different modes. The control algorithms are also different for different

modes. The mode selection is done by the user through keyboard. The keyboard reading is read

through serial channel and saved in the memory. On power-on, the system checks the important

system parameters, if everything okay, it displays ready status on the display. If some error is

there, it will be displayed on the display unit. In case of serious errors, the system does not switch

over to the operational mode selected by the user that means the actuators driving the electro-

mechanical system will be off.

On selecting the mode, the user needs to feed the required parameters related to the specific

mode. For example, if operating in position mode, it needs to feed the position data in x and y

direction so that the EO sensor can be positioned accordingly.

Other Systems

Keyboard Serial Driver

Main

Processor

Serial Driver

Display

Rate sensor

Position sensor

DAQ

DAQ

DSP

Processor

DAQ EO

sensor

DAC
Power

Module

Electro-mechanical

system

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6633

During the normal operation, the user can request the system to display the health monitoring data

to get information about various system parameters. It can be done by giving the command from

the keyboard. The system will acquire all the parameters and pass to the display unit to display it

to the user.

In addition to this, the system is also interfaced with other units. This requires continuous

exchange between the systems. This does not need a command from the user. Rather, the system

itself checks if another unit is available and carry out the transfer of the data among the same.

4. UML MODELLING OF THE SYSTEM

As mentioned earlier, the COMET method has been used to model the system. The requirements

modelling and analysis modelling of the above system has been carried out using VP-UML and

has been represented in the following paragraphs.

A. Requirements Modelling

The first phase in development of an embedded system either hardware or software is functional

requirements capturing. This basically defines what the system is supposed to do. In case of

UML, the requirements are captured using use-case diagrams from external actors’ point of view.

A use-case tells what the system does for each actor. In the present system (Stabilization System),

the actor can be a human user as well as the external I/O devices. The use-case diagram for

stabilization system is shown in Figure 2. The use-cases shown in the frame stab_control_system

are the functions identified that the system is supposed to do.

Figure 2: Use Case diagram for stabilization system.

The use-cases are generally accompanied by their description in terms of brief description, pre-

conditions for that use-case to happen, post-conditions showing the result of the use-case and

flow of events within the use-case. These are given in the following tables from Table I-III.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6644

TABLE I

USE CASE (SELECT MODE) DESCRIPTION

Brief Description

This use case is used to select the mode of the system in which it will be

operating. It can select either of the calibration, position or stab mode.

Preconditions

The system should be switched on. It will pass all the health monitoring

parameters and ready to switch to any mode.

Post-conditions

The motors will be switched on to operate in the selected mode. The

selected mode and the related parameters will be displayed on the

display device.

Flow of Events

Actor Input System Response

1

Switch on the system.

2

All the devices in the system will

be powered up except the motors.

3

Select health monitoring data

display.

4

The system will check all the

devices and display the status.

5

If everything ok, select mode

from the keyboard.

6

The system will switch over to

the selected mode and drive the

motors.

TABLE II

USE CASE (GET STATUS OF THE SYSTEM) DESCRIPTION

Brief Description

This use-case is required to acquire the current status of main

parameters and the main devices. This is to check the health status of

the system and updated values of system parameters.

Preconditions

System should be power-on.

Post-conditions

The updated parameters are acquired and displayed on the display

unit. In case of any parameters out of range, the indication is given

on the display.

Flow of Events

Actor Input System Response

1

Give the command from the

keyboard to update the values

of all selected parameters.

2

The system collects the updated

values of the selected

parameters and display.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6655

TABLE III

USE CASE (EXCHANGE DATA WITH OTHER SYSTEMS) DESCRIPTION

Brief Description

This use-case transfers data between the stab-system and other system

units.

Preconditions

System should be power-on. It should be either in position or stab mode.

All the mode related parameters should be ok.

Post-conditions

Depending on the mode, the system will transmit/receive the data. This

data is used in the system for the particular mode selected.

Flow of Events

Actor Input System Response

1

Select the mode

2

Execute the mode

3

Check the connectivity with other

systems

4

If everything ok, exchange the

data

5

check the mode and parameters values on the display.

B. Analysis Modelling

Static Modelling

The real-time embedded systems continuously interact with the environment and respond to the

events. Therefore, it is very much essential to understand the interface between the system and

the external environment. The static modelling is done for showing these interfaces and to

describe the static structure of the system by developing a system context diagram. A system

context diagram provides a more detailed view of the system boundary than a use-case especially

for real-time systems. The system context class diagram for stab_control_system is shown in

Figure 3.

Figure 3: System Context Class Diagram for Stab_Control_System.

In the stab_control_system, the user enters the mode and data through the keyboard. The system

uses the sensor data of various sensors like EO sensor, position sensor, rate sensor etc. and it

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6666

controls the movement of the mechanical gimbal assembly depending upon the mode and

respective data entered by the user. A timer actor is required which manages the timing

requirements for the system. These timings are required for processing unit, generating sampling

rate for implementing control algorithms, sampling EO sensor data, timings for updating display,

reading of keyboard etc. The display unit is required to display the imagery data from EO sensor

and the status related information of the system. The system interacts with other systems classes

to transfer the interrelated data.

In the present context diagram, the system has been shown as a class with stereotype “System”

and the external environment is depicted as external classes to which the system has to interface.

The external classes are also categorised using stereotypes like “External User”, ‘External

Device”, “External Input Device”, ‘External Output Device”, “External User” and “External

Timer” etc.

The next step is to structure the Stab_Control_System into objects. The objective of the object

structuring is to decompose the problem into objects within the system. The object structuring

diagram for the system has been shown in Figure 4.

Figure 4: Object Structuring Diagram of the System.

 As shown in the Figure 4, the following objects have been identified:

- Interface objects: Keyboard Interface, Sensor Interface, display Interface, Actuator Interface

and Other system Interface. These are identified by the external classes that interface to the

system.

- Entity objects: Measured Sensor Value, Final Control Value, Control Loop Co-efficients.

These objects are required to store the information.

- Control objects: Mode Control, Timer Control. These objects are required for the overall

coordination of the system.

 In addition to the above, “algorithm” objects are also identified which are responsible for the

control algorithms to operate the system in various different modes.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6677

These identified objects will be considered in the preparation for the dynamic modeling of the

system.

Dynamic Modelling

The dynamic modelling is of significance importance in real-time systems design. This

emphasises on the dynamic behaviour of the system. In the previous section, the use-cases were

refined to show the interaction among the objects. To model the dynamic behaviour of the

system, UML uses the sequence and collaboration diagrams. These two kind of dynamic

diagrams fall in the category of Interaction diagrams. These diagrams are used to describe the

flow of messages between the objects. Whereas, the sequence diagrams emphases on the order in

which the messages or events are occurring, the collaboration diagrams focus on the relationships

among the objects. Hence, the sequence diagrams are useful in describing the procedural flow

through many objects and collaboration diagrams are useful for visualizing the way several

objects collaborate to get a job done.

In addition to this, the state dependent objects can also be further explored using finite state

machine diagrams.

In the present system modelling, the collaboration diagrams have been developed showing the

sequence of events occurring in the system through the interactions among the objects. The same

has been shown in Figure 5. The rectangles in this figure represent objects not classes. The arrows

on the links represent messages. These are labelled with their name and sequence numbers.

Figure 5: Collaboration diagram.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6688

In the actual system design, the modular approach has been adopted where different sub-units

have been integrated based on their functionality. Here, the same has been shown as different

layers. The three layers has been chosen are: deliberate, sequencing and reactive layers. The

functionality of these layers has been divided as follows:

- Deliberate Layer: Interface with user and execute a planning process.

- Sequencing Layer: Controlling the part that executes the process by managing the components

in reactive layer and extracting information from the sensors.

- Reactive Layer: Controls the real-time command and hardware related modules like sensors,

actuators and other systems.

In the collaboration diagram, two sequences have been shown. The sequence no. 1 & 2 are further

elaborated in the following paragraph.

The sequence no. 1 mainly represents the initialization of the system. The mode and data related

to the same are entered by the user through keyboard interface. These are saved in the memory.

Health of the system is monitored. If everything ok (i.e. ‘Yes’), the system starts the timer for

proving interrupts to execute the control laws. The actuators are also switched on. The required

information is sent to display for updating the user about status of the system. In case, the BITE

check status is not ok (i.e. ‘No’), the timer for control algorithms and the actuators are switched

off.

The actions of sequence no. 2 start with the timer interrupt. It is important to mention here that

the timer used for the control law implementation is periodic as the performance of control law

depends upon the sampling rate when implemented in digital domain. When this interrupt occurs,

the system first reads the mode set by the user and the respective data. In feedback control loops,

the present output depends not only on the present inputs but also on the previous inputs and

outputs. Hence, the next step is to read the previously stored values. Depending on the selection

of mode, the particular servo sensor value is read. The control law is implemented using these

inputs and the corresponding co-efficient values. The output of the control law is the final control

value (FCV) which is used to drive the actuators. The previous values are updated before the

occurrence of second timer interrupt. The required data is exchanged with the other systems.

The present system Stab_Control_System is having a state dependent object i.e. Mode Control.

Therefore, there is need to develop a state chart that will be executed by Mode Control object.

The state dependent dynamic analysis addresses the interaction among objects that participate in

the state dependent use cases. As per [5], the state chart must match with the collaboration

diagram and specifically it is required to take into account the messages that are received and sent

by the control object, which executes the state chart. Hence, the events shown on the state chart

diagram must be consistent with the input events of Mode Control object. Similarly, the output

events must be consistent with each other. Same consideration has been taken while deriving the

state chart shown in Figure 6.

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

6699

Figure 6: State diagram.

Normally like any embedded system’s infinite loop, the system is shown in idle mode and on

occurrence of either input by the user or the interrupt generated by the timer triggers the next

cycle of operations of the system. In the same way, the outputs of the system i.e. controlling of

actuators, display and other system also is consistent with the collaboration diagram.

5. CONCLUSION

This paper has presented the requirements and analysis modelling of a control system using

object oriented concept using UML/COMET method. Through these implementations, it has been

found that the UML standard is very useful in requirements capturing, decomposing the system

into objects and defining their relationships. The control system application models have been

developed using three UML modeling mechanisms: use case modeling, object modeling, and

dynamic modeling respectively. Through requirements modeling and analysis modeling, the

usability of the Use Case, Class/object, Collaboration and State-Chart diagrams has been

exploited. The models presented in this work are obtained after lot of iteration going forward and

backward between static and dynamic models. The models have been developed irrespective of

the target platforms on which finally they will be executed, hence, enabling their reuse over

different operating platforms. The approach used in this work shows the possible adoption of

UML in the embedded system design .

International Journal of Software Engineering & Applications (IJSEA), Vol.3, No.2, March 2012

7700

6. REFERENCES

[1] G. Martin, L. Lavagno, and J. Louis-Guerin, “Embedded UML: a merger of real-time UML and

codesign”, CODES 2001, Copenhagen, April 2001, pp.23-28.

[2] Rumbaugh, J., Jacobson, I. and Booch, G. 1999. The Unified Modeling Language - Reference

Manual. Reading, MA: Addison Wesley Longman.

[3] Holt. J. 2001. UML for Systems Engineering. United Kingdom: The Institution of Electrical

Engineers.

[4] Hofmann, P. P. and Schurr, A., 2002. OMER – Object-oriented Modeling of Embedded Real-Time

Systems. Post-proceedings of OMER-1: May 28/29 1999, Herrsching am Ammersee and OMER-2:

May 10-12 2001, Herrsching am Ammersee.

[5] H.Gomma, Designing Concurrent, Distributed, and Real-Time Application with UML, Addison-

Wesley, 2000.

[6] G. Martin, "UML for Embedded Systems Specification and Design: Motivation and Overview",

DATE 2002, March, 2002.

[7] E. Riccobene, P. Scandurra, A. Rosti and S. Bocchio, “A SoC Design Methodology Involving a

UML 2.0 Profile for SystemC”, Proc. Design, Automation and Test in Europe, 2005.

[8] T. Schattkowsky and W. Muller, “Model-Based Design of Embedded Systems”, Proc. 7th IEEE Int.

Symp. on Object-Oriented Real-Time Distributed Computing, 2004.

[9] N. A. Zakaria, M. Kimura, N. Matsumoto, N. Yoshida, “Stepwise Refinement in Executable-UML

for Embedded System Design: A Preliminary Study”, World Academy of Science, Engineering and

Technology 55, 2009

[10] G. Wang, “Modeling C-based Embedded System using UML Design” Proceedings of IEEE

International Conference on Mechatronics and Automation, 2009

[11] OMG Unified Modeling Language, Version 1.5, March 2003. Available at:http://www.uml.org

[12] M. Fowler and K. Scott, UML Distilled 2nd Edition, Addison Wesley, 2000

