
© 2017 Beningo Embedded Group , All Rights Reserved

Secure Bootloader Design Techniques for
MCU’s

© 2017 Beningo Embedded Group, All Rights Reserved

The Lecturer

Jacob Beningo
Principal Consultant

: jacob@beningo.com
: 810-844-1522

: Jacob_Beningo

: Beningo Engineering

: JacobBeningo

: Embedded Basics

Newsletters

• Embedded Bytes

http://bit.ly/1BAHYXm

Consulting
• Secure Bootloaders

• Code Reviews
• Architecture Design
• Real-time Software
• Expert Firmware Analysis
• Microcontroller Systems

Embedded Training
• RTOS Workshop
• Bootloader Design
• Debugging Techniques
• Security Fundamentals
• Micro Python

Social Media / Contact

www.beningo.com

http://bit.ly/1BAHYXm

© 2017 Beningo Embedded Group, All Rights Reserved 3

Session Overview

• Implementation models

• Bootloader fundamentals review

• Secure bootloader stages

• Setting a security strategy

• Key concepts for security, robustness and speed

• Best practices for secure bootloader design

Objective:

Topics:

• Explore bootloader design and the techniques necessary to secure

them.

© 2017 Beningo Embedded Group, All Rights Reserved

Hands-on Example Materials

Visit www.atollic.com to download the materials

http://www.segger.com/

© 2017 Beningo Embedded Group, All Rights Reserved

Environment MCU

What is a bootloader?

© 2017 Beningo Embedded Group, All Rights Reserved

1

3rd Party

2

Open Source

3

Roll your own

4

Silicon Vendors

Where do bootloaders come from?

© 2017 Beningo Embedded Group, All Rights Reserved

DfuSe Bootloader Utility

STM32 ARM Cortex-M

© 2017 Beningo Embedded Group, All Rights Reserved

Basic Bootloader Models

© 2017 Beningo Embedded Group, All Rights Reserved

DEMO Project Setup

Bootloader
Demo

© 2017 Beningo Embedded Group, All Rights Reserved

Basic Bootloader Models

© 2017 Beningo Embedded Group, All Rights Reserved

The need for secure updates

Threats to Firmware Updates

Firmware reverse
engineering

Loading Firmware on an
unauthorized device

Firmware modification

Loading unauthorized
firmware

1 2

3 4

© 2017 Beningo Embedded Group, All Rights Reserved

Hash Algorithms
• Hashing
– An algorithm that produces a digital “fingerprint” of the data that it

processes
– Is a one-way function (not reversible)
– Takes a string of any length and generates a fixed-size output (digest)

• Example hash functions
– MD5 (120-bit)
– SHA-1 (160-bit)
– SHA-3 (224-bit, 256-bit, 512-bit)

Hello World!

SHA-1

2ef7bde608ce5404e97d5f042f95f89f1c232871

© 2017 Beningo Embedded Group, All Rights Reserved

Hash Algorithms

• Hashes can be used to verify the firmware
– Does the received hash match the received firmware?
– On startup, does the application match what is expected?

Firmware

Digest

Hash

© 2017 Beningo Embedded Group, All Rights Reserved

Hash Algorithms

Digest Digest Equal ?

SystemFirmware Update

• Potential Issues
– Hacker can modify software and recalculate the hash
– Additional overhead to calculate
– May require more code space

© 2017 Beningo Embedded Group, All Rights Reserved

Hash Algorithms

• Speed and Size Comparisons

Algorithm Block Length Security Status Compute Speed

MD5 128 bits Broken Fast

SHA-1 160 bits Broken Slow

HAVAL 128 to 256 bits Broken Fast

SHA3-256 256 bits Secure Slow

Tiger 192 bits Secure Fast

WHIRLPOOL 512 bits Secure Super Slow

RIPEMD-160 160 bits Secure Slow

© 2017 Beningo Embedded Group, All Rights Reserved

Digital Signatures

• Digital Signature (Digital Signing)
– Encrypting the firmware digest using asymmetric encryption
• Ex: RSA

– Only the private key can encrypt data
– A public key is used to decrypt the data

Firmware

Digest

Hash

Private Key

Encryption Signature

© 2017 Beningo Embedded Group, All Rights Reserved

Digital Signatures

• Authentication

Firmware

Digest

Hash

Public Key

DecryptionSignature

Digest

Hash

Calculated

Received

Are they equal?

© 2017 Beningo Embedded Group, All Rights Reserved

Cryptography Overview

Original

Cipher
Text

Private Key

Decryption OriginalEncryption

Private Key

• Secret Key Cryptography
– Also known as Symmetric Key
– Single private key exchanged between device and manufacturer

© 2017 Beningo Embedded Group, All Rights Reserved

Cryptography Overview

• Example AES Implementation (Cipher block chaining [CBC])

S-Records

Encrypted
Data

DecryptionEncryption

Private Key Private Key

S-Records

Initial Vector

Mode

Mode

© 2017 Beningo Embedded Group, All Rights Reserved

Cryptography Overview

• Example AES Implementation (Cipher block chaining [CBC])

Block #1

Encrypted
Block #1

Encryption

Initial Vector

Block #2

Encrypted
Block #2

© 2017 Beningo Embedded Group, All Rights Reserved

Cryptography Overview

Original

Cipher
Text

Public Key

Decryption OriginalEncryption

Private Key

• Public Key Cryptography
– Also known as Asymmetric Key
– Private key is used to encrypt
– Public key is used to decrypt

© 2017 Beningo Embedded Group, All Rights Reserved

Developing a Secure Bootloader

• Several different methods

– Download entire encrypted image before processing

– Download single encrypted records and partial program

– Transmitting an unencrypted application over a secure protocol such
as TLS

– Combination of the above

• Considerations

– Speed

– Code size

– Security level requirements

© 2017 Beningo Embedded Group, All Rights Reserved

Developing a Secure Bootloader

Encryption

Private Key

• Manufacturer Side
– Generate a signature for firmware authentication and verification
– Encrypt the firmware
– Transmit the firmware signature
– Transmit the encrypted firmware

Firmware

Digest

© 2017 Beningo Embedded Group, All Rights Reserved

Developing a Secure Bootloader

• Device Side
– Store encrypted image and signature to temporary memory
– Decrypt the signature and authenticate
– Decrypt the image and write to flash

© 2017 Beningo Embedded Group, All Rights Reserved

Securely Boot the System

• Generate a “Root of Trust”
– Initialize stage 1 trusted software (bootloader)
– Authenticate resident application signature
– Authenticate device for application
– Load application

© 2017 Beningo Embedded Group, All Rights Reserved

Secure Bootloader Best Practices

• Select a microcontroller that has

– a hardware cryptographic engine

– True random number generator (TRNG)

– Memory Protection Unit

• Lock the flash security bits to protect the bootloader and application

• Securely store private keys

• Clearly identify up-front the level of security that is necessary for the bootloader

• Use signatures to authenticate the firmware source

• Minimize complexity

• Use AES to encrypt your firmware

© 2017 Beningo Embedded Group, All Rights Reserved

Going Further

• Download beningo.com resources
– C Doxygen templates
– RTOS Best Practice Guide
– Bootloader White Paper
– Bootloader Design Techniques Course

• Atollic.com resources
– TrueStudio 8.1
– Bootloader template project

• EmbeddedRelated.com
– Embedded Question Forum

© 2017 Beningo Embedded Group, All Rights Reserved

Questions

