
1

White Paper

“The drive to push more
computing to the edge
is forcing several new
challenges on developers.”

Abstract
Digital Signal Processing (DSP) has traditionally required the use of an expensive dedicated

DSP processor. While solutions have been implemented in microcontrollers using fixed-

point math libraries for decades, this does require software libraries that can use more

processing cycles than a processor capable of executing DSP instructions. In this paper, we

will explore how we can speed up DSP codecs using the DSP extensions built-in to the Arm

Cortex-M processors.

Technology trend: moving processing to the edge of the network

The embedded systems industry is currently undergoing a significant transition that is being

driven by the need to have intelligent, real-time, edge devices in the IoT. As systems need

to do more at the edge to enable more compute performance, it’s forcing devices to do

far more in software than ever before. In the past, data could be streamed to the cloud for

processing and analysis, but as intelligent real-time systems begin to fill the landscape, that

processing needs to be done at the edge.

First, as more computing moves to the edge, more processing power is needed at the

edge. This leads to other challenges, such as minimizing energy consumption, processing

the plethora of signals that are available at the edge and finding ways to minimize bil-of-

materials (BOM) costs in a processing-hungry environment.

As we move towards the edge device, developers need to find ways to improve the

efficiency at which they process signals and data in a way that minimizes component count

and BOM cost. To meet these needs, developers can leverage the DSP capabilities that are

built into the Arm Cortex-M4, Cortex-M7, Cortex-M33 or Cortex-M35P processors.

In the past, developers had to grapple with software challenges such as:

	 Expensive dedicated DSP processors

	 Time-consuming software development

	 Longer testing cycles

	 Required expert knowledge

	 Fixed point numerical libraries

Improving Codec Execution
using Arm Cortex-M Processors
Author: Jacob Beningo,
Beningo Embedded Group

White Paper

2

Today, developers can leverage many different solutions to help them quickly, easily and

cost-effectively utilize DSP in their designs. These include:

	 Using a microcontroller with DSP extensions
	 Utilizing modeling software that can generate the software algorithm

	 Accessing free DSP libraries, such as CMSIS-DSP

In this paper, we will discuss how developers can improve DSP codec execution using the

Arm Cortex-M DSP extensions and associated libraries.

What are DSP extensions?

DSP extensions provide a microcontroller with an extended instruction set that includes

DSP instructions, such as single instruction multiple data (SIMD) that allow DSP algorithms

to execute faster than on a standard microcontroller. A standard microcontroller is limited in

its DSP instruction set, which means if DSP is needed, either an additional DSP processor

must be used or more clock cycles on the microcontroller must be expended to execute a

software library that can add that capability.

There are several benefits to using a microcontroller that has DSP extensions. These

benefits include:

	 Significant savings on the BOM (i.e. cost of products), by replacing two processors

with one.

	 Reduced system-level complexity by removing the need for shared memory and DSP

communication, complex multiprocessor bus architectures, and other custom ‘glue’ logic

between the processor and DSP.

	 Reduced software development costs, because the entire project can be supported

using a single compiler/debugger/IDE, and is programmable in a high-level programming

language such as C or C++

DSP software can be an extremely powerful tool for developers who understand how to

utilize it properly. To learn more about the benefits that DSP offers, check out my latest

blog: 5 benefits to replacing analog components with DSP software.
You can also learn how to get started with DSP by reading my blog “5 Tips for Getting
Started with digital signal processing on Arm Cortex®-M CPUs”.

“DSP extensions make
processing codecs faster by
including instructions that
speed up common DSP
operations.”

https://developer.arm.com/technologies/dsp/dsp-for-cortex-m
https://arm-software.github.io/CMSIS_5/DSP/html/index.html
https://community.arm.com/iot/embedded/b/embedded-blog/posts/5-benefits-to-replacing-analog-components-with-dsp-software
https://www.sensorsmag.com/sponsored/5-tips-for-getting-started-digital-signal-processing-arm-cortex-r-m-cpus
https://www.sensorsmag.com/sponsored/5-tips-for-getting-started-digital-signal-processing-arm-cortex-r-m-cpus

3

First, the SIMD instructions can operate on 8-bit or 16-bit integers, which allows a single

instruction to operate on multiple pieces of data within the same register. For example,

the SIMD instruction can operate on either two 16-bit values or four 8-bit values. This

is useful because 8-bit and 16-bit data types are most often used in audio and video

processing, which do not require 32-bit precision and are the most advanced types of

signals that need to be processed at the edge.

In addition to the SIMD instruction, there are many other useful instructions within the Arm

Cortex-M instruction set. These features include:

	 32-bit accumulate

	 Signed multiply with up to 64-bit accumulate

	 Unsigned multiply

	 Saturate

	 Packing and unpacking

	 Parallel addition and subtraction

“This provides a level of
parallel processing where
the register is still 32-bits,
allowing more performance
to be squeezed out of the
processor. ”

Figure 1 – The Arm
Cortex-M family instruction
set. It includes DSP and
floating-point instructions to
maximize performance.

The DSP extension instruction set
At the lowest levels, the instruction set makes all the difference for how efficiently the DSP

algorithms can be executed. Figure 1 shows a break-down of the different instructions

that are supported by the Arm Cortex-M processors. As you can see, there are quite a

few instructions supported by the Cortex-M4, Cortex-M7, Cortex-M33 and Cortex-M35P

processors. There are several instructions set features that are particularly interesting to

embedded developers working in DSP applications.

4

MAC instructions are used in many filter applications such as IIR and FIR filters which form

a major foundation in DSP applications. To see a full list of Arm Cortex-M DSP instructions,

please visit the Arm website.

Utilizing the Floating Point Unit (FPU) to
improve performance
Floating point mathematics can be a challenge from a performance stand-point for a

microcontroller-based system especially at the edge. Many signal processing algorithms

require floating point mathematics. In a microcontroller without a floating-point unit, a

software library is provided that performs the calculations, but these calculations require

more computing cycles and more code space in order to get the job done. The FPU can not

only help decrease the calculation time, but can also decrease the code size and improve

the determinism of the calculation.

In a recent issue of The Embedded Muse1, Jack Ganssle published some relative numbers

on how the Cortex-M4F floating point unit behaved. In his experiment, the Cortex-M4F

was running at 120 MHz with no cache, a single wait state and the interrupts were

disabled. Using the IAR compiler, Ganssle created an executable that was approximately 15

kB that measured 32-bit floating point numbers and 64-bit floating point numbers with and

without the FPU. His analysis looked at a differing number of parameters which could result

in a range of execution times and also measured the relative code size. Below, in Figure 3

and Figure 4, you can see the results from running 32-bit operations with and without

the FPU.

32-bit Operation (no FPU)

Addition

Subtraction

Multiplication

Division

Execution Range (ns)

181 – 321

181 - 321

259

458 - 533

Relative Code Size

0 bytes

12 bytes

0 bytes

- 20 bytes

Figure 3 – Jack Ganssle’s
Cortex-MF FPU
measurement results for
32-bit floating point without
an FPU from The Embedded
Muse Issue 3691.

Figure 4 – Jack Ganssle’s
Cortex-MF FPU
measurement results for
32-bit floating point with an
FPU from The Embedded
Muse Issue 3691.

32-bit Operation (no FPU)

Addition

Subtraction

Multiplication

Division

Execution Range (ns)

17

17

17

83

Relative Code Size

-786 bytes

-786 bytes

-786 bytes

-786 bytes

5

“For 32-bit operations,
we can see from this
experiment that using
the FPU increases the
performance by at
least 10x”

64-bit Operation (no FPU)

64-bit Operation (no FPU)

Addition

Addition

Subtraction

Subtraction

Multiplication

Multiplication

Division

Division

Execution Range (ns)

Execution Range (ns)

293 – 745

17

290 - 703

17

525 – 533

17

1035 - 1329

83

Relative Code Size

Relative Code Size

488 bytes

-786 bytes

488 bytes

-786 bytes

-100 bytes

-786 bytes

-100 bytes

-786 bytes

Figure 5 – Jack Ganssle’s
Cortex-MF FPU
measurement results for
64-bit floating point without
an FPU from The Embedded
Muse Issue 3691.

Figure 6 – Jack Ganssle’s
Cortex-MF FPU
measurement results for
64-bit floating point with an
FPU from The Embedded
Muse Issue 3691.

As you can see, the no FPU versions require a range of computing time as low as 181

nanoseconds (ns) for addition and up to 533ns for division. The code size for the operation

remained pretty close to constant. However, with the FPU, with a range of parameters

passed, Ganssle found that the FPU executed the operation in 17ns for addition,

subtraction and multiplication and then 83ns for division. The code size also decreased by

almost 800 bytes.

Depending on the operation being performed the improvement can be significantly better.

For this reason, including an FPU in your DSP applications can be extremely important

depending on the data types that you are working with. Ganssle also did a comparison of

64-bit operations which can be seen below in Figure 5 and Figure 6.

As you can see from these experiments, the FPU made little difference in execution speed

for these large data types but the FPU was able to help decrease the relative code size.

The CMSIS-DSP Library
The most efficient way to utilize the DSP extensions in a Cortex-M processor is to leverage

the CMSIS-DSP library. The CMSIS-DSP library is a collection of over 60 free algorithms

that make developing DSP software easier. Figure 7 shows an example of the main

categories that developers can find in the library.

6

Filters

Basic math functions

Statistical functions

Support functions

Fast math functions

Figure 7 –The CMSIS-
DSP library is a free
library containing over 60
algorithms that developers
can use to speed up their
DSP software development.

The library contains functions for designing filters, calculating interpolations, performing

complex mathematics and performing transforms. A common use of the CMSIS-DSP library

is to create IIR and FIR filters in addition to calculating a Fast Fourier Transform (FFT).

To dig deeper into the CMSIS-DSP library, you can review the CMSIS-DSP library

documentation here.

Let’s look at an example implementation of an IIR filter that utilizes the CMSIS-DSP library

using ASN Designer.

IIR Filter Deployment using ASN Designer
Advanced Solutions Nederland BV is an Arm DSP partner that provides a tool called the

ASN Filter Designer. It allows developers to create different filters, such as FIR and IIR,

and generate embedded code that implements that filter. You can see below in Figure 8

an example IIR filter header that has been designed in ASN Designer and automatically

generated into code. Normally a developer would have to design their filter in an excel

spreadsheet and then write all the code for the filter from scratch. Instead, this can be done

through high-level software and then the low-level code generated. This IIR example has 2

passbands between 0 – 25 Hz and 64.1 and 250 Hz.

“With the automatically
generated code, not only
are possible mistakes
removed, but developers
can easily fine-tune their
filters without having to go
back and rewrite or rework
their code. ”

Figure 8 – An IIR filter that
has bands between 0
and 25 Hz and 64.104
and 250 Hz.

https://arm-software.github.io/CMSIS_5/DSP/html/index.html

7

Figure 9 shows all the code necessary to setup the IIR filter. You can notice that there are

buffers for data which can be seen in OutputValues and InputValues. The transform for the

IIR filter is clearly documented in the comments. The filter coefficients are also in a table

that is easy to read.

The interesting part for us, is that we want to look and see how the CMSIS-DSP libraries

are used. As you can see in Figure 10, there are three different CMSIS-DSP calls to the

following functions:

	 arm_sin_f32
	 arm_biquad_cascade_df2T_init_f32
	 arm_biquad_cascade_df2T_f32

The arm_sin_f32 function is used in conjunction with a custom white_noise_gen function

to create a test signal that is used for input into the IIR filter. The arm_biquad_cascade_

df2T_init_f32 function is used to setup the coefficients that will be used in the IIR filter.

Finally, arm_biquad_cascade_df2T_f32 is used to perform the filter operation.

Figure 9 – This figure shows
the declarations necessary
to setup the IIR filter. Notice
that the IIR filter uses 32-bit
floating point numbers.

Figure 10 – The
automatically generated
output that creates and
executes the filter on
test data.

https://arm-software.github.io/CMSIS_5/DSP/html/group__sin.html#gae164899c4a3fc0e946dc5d55555fe541
https://arm-software.github.io/CMSIS_5/DSP/html/group__BiquadCascadeDF2T.html#gafd8b4068de567e9012e444f1c2320e1c
https://arm-software.github.io/CMSIS_5/DSP/html/group__BiquadCascadeDF2T.html#gaecf9b22907e89fc35f097b50589cf86a

8

Conclusion
Many factors within the embedded systems industry are driving the need to reduce costs

and improve execution performance at the edge. As we start to push processing to the

edge, embedded developers will need to leverage DSP capabilities more and more. The

Arm Cortex-M processors and ecosystem have built the foundation that developers need

to easily implement DSP codecs while improving computing capabilities through DSP

extensions and libraries, while minimizing BOM and costs.

To learn more about DSP on the Arm Cortex-M processor, consider the following free

webinars to get started:

How to choose between analog hardware and digital signal processing

Running DSP Algorithms on the Arm Cortex-M

DSP software development masterclass with Arm and MathWorks

Additional resources to help you get started:

Arm Cortex processors with signal processing
Arm Cortex-M processors with signal processing

 	CMSIS-DSP software library
 Use ASN Filter Designer to generate CMSIS-DSP code

Arm’s DSP ecosystem partners

References

1) Embedded Muse Issue 369 by Jack Ganssle

https://pages.arm.com/Webinar-how-to-choose-analog-hardware-dsp-software.html?_ga=2.264658255.1156211203.1552906472-1053209258.1552556445
https://pages.arm.com/Webinar-recording-DSP-software-masterclass-with-Arm-and-MathWorks.html
https://developer.arm.com/technologies/dsp
https://armh.sharepoint.com/sites/EmbeddedAuto/Private Section/Ecosystems & Outbound/Embedded/Jacob Beningo/Decreasing BoM costs with software/•%09https:/developer.arm.com/technologies/dsp/dsp-for-cortex-m
http://www.keil.com/pack/doc/CMSIS/DSP/html/index.html
http://www2.keil.com/mdk5/cmsis/asnfd
https://developer.arm.com/technologies/dsp/arm-dsp-ecosystem-partners
https://www.beningo.com/running-dsp-algorithms-on-the-arm-cortex-m/

