
1

Software Developers’
Guide to IoT Security
October 2019

By Jacob Beningo, President
Beningo.com

White Paper

http://Beningo.com

2

Table of Contents

Introduction 3

The Growing Need for IoT Security 4

Accelerating Security with Platform Security Architecture 6

 Analyzing a System for Threats and Vulnerabilities 7

 Architecting a Secure Solution 9

 Secure Implementation 13

 Implementing Secure Firmware with TF-M 13

 Implementing Software Building Blocks with CMSIS 15

 Partitioning Designs with CMSIS-Zone 15

 Secure Cloud Connectivity with the Pelion IoT Platform 16

 Certifying That a System is Secure 17

Conclusion 18

3

Introduction
The number of devices connecting to the internet each year is growing at an exponential

rate. In fact, Arm expects there to be over 1 trillion connected devices by 2035. While

the functionality for so many devices can hardly be conceived now, the one thing that

each device is going to need is a secure software implementation to protect it from the

numerous threats. For many developers, though, security is an intimidating word. It’s not

completely clear to embedded systems developers what security is or how to implement

it correctly. In this paper, we will explore what embedded software developers need

to understand in order to develop secure IoT applications.

4

The Growing Need for IoT Security
For many companies, having security on their product seems to be a nice-to-have

feature rather than a required feature. The idea that someone would try to attack,

hack or exploit their product seems distant, improbable and complicated. Companies

are often focused on getting their product to market with the features that are needed

to support their customers, and security just doesn’t feel like a priority in today’s

modern, fast-paced product development cycle. The fact though is that security

isn’t just nice to have, for any connected device it has become essential, a primary

requirement and potentially even negligent to not consider security for a product.

Take for example several headlines from the recent past involving security violations

with connected devices. The first, and probably most well-known among embedded

developers, were hackers that found a way to remotely access Jeeps and control various

settings while the car was in motion! The hackers were even able to control systems

such as the engine, power steering and brakes (Video Link)1.

Another example was a recent recall of nearly 500,000 pacemakers’ due to holes in

the firmware that allowed remote hackers to access and control the pacemaker2. In fact,

security is overlooked and under-considered so often that a group of hackers recently

created a killer application that could control an insulin pump because the FDA and

the manufacturer didn’t take their security vulnerabilities reports seriously!3

https://www.youtube.com/watch?v=MK0SrxBC1xs

5

Security is no longer optional for four primary reasons:

1. The IoT now consists of billions of devices and while you might think the chances

of someone finding your device is statistically improbable, just put a Linux machine

on the internet with the default admin password and watch how the device doesn’t

last a day before it is discovered and hacked. (I know this will happen because I have

actually tried it and the device didn’t even make it through the weekend!).

2. Customers and businesses need integrity in their data to remain private and

secure. Companies are developing applications that collect and store data about

sleep patterns, heart rates, eating, exercise, travel and untold numbers of other data.

It’s imperative to users that their data will not be exploited, transmitted publicly or

used against them in some other manner without their expressed consent. In today’s

world, we all know how valuable data is and if you can’t protect that data, customers

will go elsewhere to where they believe they will be protected.

3. Breached security of a device or its data can result in huge potential losses for

the customer but, also for the device company. Developing and launching a product

is expensive and often involves the development of numerous pieces of intellectual

property, such as the source code. A device breach could expose years’ worth

of software development and allow hackers to exploit the software for their

own purposes or sell trade secrets to competitors.

4. Security is no longer optional because the governments of the world are now

stepping in and beginning to regulate the internet. Take for example the fine just

issued to Facebook4. Hackers want to gain access to an IoT device and exploit its

data in some manner and governments are starting to aim at technology companies

that don’t take security seriously. There are several examples of new regulations

such as Europe’s General Data Protection Regulation (GDPR), the IoT Cybersecurity

Improvement Act of 2019 and the California SB-327.

6

What Needs to Be Protected?

As we recognize that security is now essential and must be included in every device,

we need to stop and consider what exactly is it that we are protecting. It turns out that

there are two general categories of assets:

1. General data assets associated with the device
These assets include things like the device firmware or software, the microcontrollers

unique device ID and passwords for the user or device access. General assets can

also be considered encryption keys that allow remote access to the device, cloud

connectivity and manage secure communication.

2. Application-specific assets
These assets are directly related to what the product does. These might include sensor

data like images, temperature, pressure and many other. Control data that manages to

turn on LEDS, a pump, an actuator, etc. would also be considered a device-specific asset.

At this point, you might be wondering how do you go about securing an embedded

system? How do you identify the assets to protect in your system, let alone actually put

in place a mechanism to protect them? The best way to start securing your product in

a cost and time-effective manner is to leverage an existing industry standard for security.

Accelerating Security with Platform
Security Architecture
The Platform Security Architecture (PSA) was developed by Arm and ecosystem

partners, to provide the embedded systems industry with a baseline security architecture

that could be leveraged to secure an embedded product. PSA is designed to give you

a collection of holistic resources to make security simpler: a set of threat model and

security analyses documentation, hardware and firmware architecture specifications,

an open source firmware reference implementation5 and an independent security

evaluation scheme.

One way to look at PSA is as an industry-best practice guide that allows security

to be implemented consistently for both hardware and software. Take a moment to

absorb that statement: security is not just something that is done in software, but also

something in hardware! A secure solution requires both components working together.

It’s important to realize that security is not just something that you bolt onto the end

of your product when you are ready to ship it out the door. To get started writing secure

software, you need to adopt industry best practices and start thinking about security

from the very beginning of the project and ensure that the hardware can support the

software needs.

https://www.arm.com/why-arm/architecture/platform-security-architecture

7

Within PSA, there are four primary stages to develop a secure solution, which

begin even before you start creating a product. This is because you need to identify

the security needs, and let that dictate what is required in the hardware and software

to secure the system.

There are four steps included in PSA that can be seen in Figure 1:

 Analyze

 Architect

 Implement

 Certify

Figure 1 – The four primary steps of PSA

As you can see within the PSA model, there are two steps that come before

the implementation that are critical to making sure the security of your systems

is correct. Let’s look at how to get started with secure software using PSA.

Analyzing a System for Threats
and Vulnerabilities
Before selecting your microcontroller, you need to analyze your “to-be-built” product

for threats and vulnerabilities. This involves identifying the data assets in the system

and the threats that these assets will face. To understand the threats correctly, you need

to define the security requirements for the system that will dictate not just the security

strategies and tactics that will be used, but also the hardware and software that will

be needed to protect those assets properly.

Analyze
Threat modelling

Implement
Hardware and software

Architect
Hardware and firmware
architecture specs

Certify
Independently testing
SoCs, devices and OSes

STAGE 2

STAGE 3

STAGE 4

Unlocking digital
transformation

STAGE 1

8

There are several different ways to analyze your system. One of the most simple and

most comprehensive approaches is called threat model and security analyses, which is

introduced in PSA. If you want to know more about the process, you can read all about
it in this blog, or a joint white paper between Arm and Cypress Semiconductor.

Five Steps to Design Security Into Your Next IoT Device
There are five key steps that you need to walk through to analyze your system.

These steps provide a comprehensive direction and example to follow to figure

out how to protect your software assets.

Figure 2 – The threat-based security analysis walks through the steps necessary

to identify the data assets in the system, the threat types that those assets will face

in the field, how to define the systems security objectives, and finally, how to generate

requirements from those objectives that will protect the system’s assets.

The outcome from following these steps and performing an analysis will be a list of

data assets, the threats that they face and the security mechanism that can be used to

protect the asset. When taken together, these can be used to create the requirements

that dictate the minimum hardware set that will be necessary to secure the system.

For example, common features that you’ll find in the security requirements for

a microcontroller will often include the following:

 Feature: Hardware-based encryption

Solution: Encryption can be used to protect data

 Feature: Digital signatures

Solution: Digital signatures can be used to verify the authenticity and integrity

of firmware that is being loaded into memory

 Feature: eFuse

Solution: eFuses can be used to lock down firmware features and create

immutable ID’s

 Identify
data assets

 Identify
threats to
the assets

Define security
objectives for

the assets

 Define security
requirements for

the system

Summarize
your findings

https://community.arm.com/iot/b/blog/posts/five-steps-to-successful-threat-modelling
https://community.arm.com/iot/b/blog/posts/five-steps-to-successful-threat-modelling
https://www.cypress.com/documentation/white-papers/threat-based-analysis-method-iot-devices

9

Architecting a Secure Solution
The big question on a lot of developers minds when they have completed analyzing

the system is how do I architect my security solution? It’s important to understand not

only what you are protecting and the mechanisms you can choose to protect them but,

what’s the best way to go about doing that? PSA outlines that using isolation within

your microcontroller is key to securing your embedded system.

The best form of isolation that you can have in your system is hardware-based isolation,

which allows you to separate the run-time environment into isolated regions that are

protected from one another through hardware. On a single-core Armv7-M processor,

the memory, peripherals and code are placed together into a single run-time environment

that, once infiltrated, can be easy for an attacker to gain access to the whole system.

The Armv7-M processors can run privileged and unprivileged modes along with leveraging

an Memory Protection Unit (MPU) to protect processes, but these are still all executed

“out in the open” on a single core.

To protect assets, you need to build hardware isolation to create separate, disparate

run-time environments. By doing this, if an attacker was to gain access to one of the

regions, they may be able to cause mischief in that one region, but would be unable

to gain access to code and resources in the other regions due to the hardware isolation.

For example, if a hacker were to gain access to a communications port, they still

would not be able to access private keys and credentials that were hardware isolated in

a separate hardware unit and protected by an MPU. Developers architecting their security

solution need to account for various methods to provide isolation within their product.

There are two different methods you can use to isolate the run-time environment

that don’t involve using an external security processor:

Multi-core processors on a single chip
The multi-processor solution provides one CPU that is dedicated to running a trusted

execution environment while the second CPU is designed to run general application

code. The trusted execution environment is often referred to as the Secure code,

while the general application code is Non-secure. For example, the Cypress PSoC 64

Secure Microcontrollers use a multi-core solution that has an Arm Cortex-M4 processor

for its rich execution environment and running general application code (Non-secure

environment), but also includes a Cortex-M0+ processor that runs all the Secure code

(Secure environment). The secure processor runs the Root of Trust and trusted services

completely isolated from the general processing core. An example of how the run-time

looks can be seen in Figure 3, which also demonstrates how the isolated execution

environment can also be further broken down into additional layers of isolation

that you can utilize in the application.

10

Single-core processor with hardware isolation
Arm TrustZone technology, included in the latest Armv8-M processors (Cortex-M23,

Cortex-M33 and Cortex-M35P) provides hardware-enforced isolation within a single-

core processor that separates the application run-time into Secure and Non-secure

domains. The Secure domain is set up so you can have secure flash, RAM, peripherals

and interrupts. The Secure domain can access all on-chip resources, while the Non-secure

domain is unable to access resources allocated to the Secure domain. The switch between

the Secure and Non-secure domains doesn’t require any additional software during run-

time. The CPU instructions to transition to the Secure zone are automatically inserted and

are deterministic, requiring just two clock cycles! Figure 4 shows an example application

that has Secure boot and Cryptographic libraries protected in the Secure Domain that

then has a user application that accesses Secure domain functionality.

User Application

Communications
stack

RTOS

USER PROJECT

Non-secure state
Function

calls

Function
calls

Start

Firmware update

Secure boot &
bootloader

Crypto library

Crypto keys,
certificates

Secure state

SECURE PROJECT

Figure 3 – An example implementation of security through isolation leveraging multiple

processors on the same chip in the Cypress PSoC 64 Secure Microcontroller.

(Source: Cypress)

Applications Trusted
App

Trusted
App

Trusted
Services

RTOS

Arm Cortex-M4

Rich Execution
Environment

Isolated Execution
Environment

Arm Cortex-M0+

Secure OS / Root of Trust

1 3 2

Hardware-based isolation within PSoC 64 Secure

MCUs enables secure element functionality and

reduces the attack surface.

Three Levels of Isolation
1. Secure execution environment (SEE) isolated

from rich execution environment

2. Root of Trust and trusted services isolation

within SEE

3. Application isolation within SEE

Figure 4 – A TrustZone application example

https://www.arm.com/why-arm/technologies/trustzone-for-cortex-m
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m23
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m33
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m35p

11

From Figure 4, it’s important to note that when you are working on security solutions,

there will no longer ever be a single-project application! Within the development

environment, you will have two separate projects that represent the two isolated

regions. This means you now need to decide where different applications belong, to the

Non-secure user application or secure project. There may be a temptation at first to just

put all the software into the secure project, but this completely defeats the purpose of

having security through isolation. That’s going back to a model for how to develop non-

secure software.

Instead, you need to look at all the components that you are going to need in your

application by creating a component diagram. From the component diagram, they

can then start to partition the components between the Secure and Non-secure regions

based on the function and whether they are being used to protect one of the assets that

were identified in the analysis phase. If it is protecting an asset, or is an asset that needs

to be protected, it should be placed into the Secure project, otherwise, it can go into

the Non-secure project. Figure 5 below shows an example break down for how the

components in an application can be separated into the new isolated paradigm.

Figure 5 – Application components now need to be examined to determine if they

are assets that need to be protected or are used to protect an asset. If they are, those

components belong in the Secure execution environment. The remaining components

can belong to the Non-secure application.

Normal environment (Non-secure) Protected environment (Secure)

Handler
Mode

Handler
Mode

Thread
Mode

Thread
Mode

Application Examples
• User applications
• RTOS
• Device drivers
• Protocol stacks

Normal Resources
• General peripherals

Secure Software Examples
• Secure boot
• Cryptography libraries
• Authentication
• RTOS support APIs / RTOS

Secure Resources
• Secure storage
• Crypto accelerators

12

When you architect your security solution, it’s important to realize that you aren’t just

looking at where different components and pieces of code and data should be located

within the isolation memory regions. As developers, you may be using an RTOS which will

also require you to carefully think through where the various application threads should

be located, and which state the processor will be in to execute the functions within

those threads. As you architect your system, there are three different types of threads:

 Non-secure only threads - only calls functions that exist within the Non-secure

isolation unit

 Secure only threads - only calls functions that exist within the Secure isolation unit

 Hybrid threads - executes functions within both the Secure and Non-secure

isolation regions. These hybrid threads often need access to an asset that you

are trying to protect

When you architect how your application should behave, you can use a UML Sequence

Diagram to show the transitions in a hybrid thread between the Non-secure and Secure

code. This can help clarify visually how an application will behave and what secure

resources are being accessed. An example can be seen below in Figure 6.

Figure 6 – Example sequence diagram for two application threads that have Secure

and Non-secure function calls.

Sample
Request

Prepare DataSample

Sample
Request

 Request
Encryption

Store
Value(s)

Encrypt

OS_Delay Packetize

Sample
Request

Tx RequestSample
Comm_Tx

Sensor Thread (NS) Sensor Thread (S) Comms Thread (NS) Comms Thread (S)

For more information, see the white paper “How should an RTOS work in a TrustZone
for Armv8-M environment” by Joseph Yiu.

https://pages.arm.com/rtos-trustzone-armv8m
https://pages.arm.com/rtos-trustzone-armv8m

13

Secure Implementation
Once the secure solution has been architected, it’s time to start the implementation.

Before writing software, it’s important to realize that there are several key components

that can help accelerate software implementation. Let’s examine each of these components

and understand how they fit into the secure software implementation phase.

Secure Boot
The first component of implementation is the ability to securely boot the processes.

A secure boot process will establish a Root of Trust by verifying the on-board chip

certificate and booting the process in stages that verify the authenticity and integrity

of all the firmware images that will be executed. Microcontroller vendors who are

involved in security solutions will often ship their microcontroller with their security
certificate that is tied to the microcontrollers unique ID. That certificate ownership

can then be transferred to a manufacturing facility that will load the product firmware

on the device or can be transferred to a developer that will use the microcontroller for

development purposes. Once ownership has been transferred, you can then implement

software, add keys, certificates and more.

The secure boot process should also verify the application integrity by calculating

the application hash and comparing it to a known hash value. This can help ensure

the application has not been unexpectedly modified. In a traditional embedded system,

this would have been done using a cyclic redundancy check or a light-weight checksum

that could easily be calculated by the firmware during start-up.

The last step in the secure boot process should verify the authenticity of the software

that is going to be executed. Authenticity is often checked through the use of a digital
signature. In a resource-constrained application, this can sometimes be a time-consuming

activity, so the actual certificate may not be stored on the device, but instead a hash

of the signature may be used.

Once the application has securely booted, there are any number of things that can be

done. For example, the secure boot code could update any onboard security processes

or simply jump to the application code to start executing the application. The exact steps

at this point will be dependent upon the applications function and purpose. As a developer

though, once secure boot is implemented, you need to investigate the existing software

that you can leverage your design. This is where Trusted Firmware-M (TF-M) comes in.

Implementing Secure Firmware with TF-M

When implementing the product’s firmware, it’s important to note that you don’t have

to start developing it from scratch. There are software libraries that have been written

with security in mind that can be used to accelerate your design.

14

For example, you can use Mbed, which includes several useful libraries such as

encryption, MQTT and TLS, to name a few. If the design can be accelerated using

existing libraries, this means there is also an opportunity to decrease development

costs as well.

There is also a trusted open governance project that was started by Arm to create

Trusted Firmware-M (TF-M). TF-M is a trusted code reference that provides examples

on how to implement Secure code on a Cortex-M platform.

TF-M is built as a set of highly configurable software components suitable for

constrained systems. It consists of secure boot and a set of secure runtime services

including: secure storage, cryptography, audit logs and provisioning that can be used

by applications7.

When getting started with secure software for your embedded system, it is always highly

recommended to review implementation examples from the microcontroller vendor that

will be used with the product:

 Security application examples

 Reference Secure code

 Identifying additional hardware and software features that are outside the

processing core

 Security use cases

For example, if you are developing an application that uses the Microchip SAML11,

a TrustZone enabled microcontroller, you will find several example projects that

demonstrate use cases such as protecting software IP, developing secure sensor

applications and how to protect and recover a system from malicious attack attempts.

(Example application can be seen below in Figure 7).

Figure 7 – An example application from Microchip using the TrustZone enabled SAM

L11 demonstrates how you can partition the application for Secure and Non-secure

run-time environments.

Secure Boot

RTC
5 Second

Temp
Sensor
Library

PORT

SERCOM1

SERCOM0

Standby

Sys Configure

Secure Management

Calls Customer-B App

Non-Secure
Application

Configure RTC for
5 second wakeup

Toggle LED

Read & Display Temp

Enter Standby

NSC
APIs IO1

Xplained
Pro

Customer B App Customer A IPSAM L11

29°C

GPIO

12C

UART

1

4

3

2

Secure
Zone

https://www.mbed.com
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware

15

You will often find that between all these different sources, you will be able to leverage

existing security materials and secure your embedded system.

Implementing Software Building Blocks with CMSIS

Many Cortex-M developers have become familiar with leveraging Cortex Microcontroller

Software Interface Standard (CMSIS) in software designs. CMSIS is a vendor-independent

hardware abstraction layer for devices that are based on Arm Cortex-M processors. CMSIS

allows you to mix and match software components from multiple software vendors that

best meet your software needs. CMSIS has been used by developers for more than

10 years now and supports more than 6,000 devices. Vendors who support CMSIS often

provide software through CMSIS packs, which are open source and available on GitHub.

You might think that secure software would not be supported within CMSIS, but

that thinking couldn’t be further from the truth. Since June 2019, CMSIS includes TF-M

with a generic hardware abstraction layer that was adopted to support Cortex-M23

and Cortex-M33 based devices. This means that you can leverage CMSIS and TF-M

to dramatically simplify software configuration for custom hardware. As we discussed

earlier, a key ingredient to successfully implement security is to partition and isolate

your software which is now available through CMSIS-Zone10.

Partitioning Designs with CMSIS-Zone

Security has added complexity to the software development lifecycle, particularly

the implementation phase. Using hardware isolation such as TrustZone now requires

you to manage memory, peripheral and other system resources across multiple software

projects and sometimes even across multiple processors. Managing these resources

easily in one place is what CMSIS-Zone is designed to do.

CMSIS-Zone includes an Eclipse-based utility that provides a simple GUI to

assign resources.

The utility8:

 Displays all available system resources including memory and peripherals

 Allows you to partition memory and assign resources to sub-systems

 Supports the setup of Secure, Non-secure, and MPU protected execution zones

with the assignment of memory, peripherals, and interrupts

 Provides a data model to generate configuration files for tool and hardware setup

The CMSIS-Zone utility makes it easy to simply click and configure the system instead

of needing to manage configurations in each project. An example screenshot for the

open-source utility can be seen in Figure 8.

Other development tools use the output of CMSIS-Zone to set-up Secure and Non-

secure projects in a consistent way. Software developers of these projects can rely

on the configuration and create the application based on it.

https://developer.arm.com/embedded/cmsis/cmsis-packs
https://arm-software.github.io/CMSIS_5/Zone/html/index.html
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone

16

Secure Cloud Connectivity with the Pelion IoT Platform

The last piece of the solution is for providing secure credentials and updating devices

at scale. Pelion IoT Platform helps to do so by providing the infrastructure to securely

manage and connect your device to the cloud.

The Pelion IoT Platform is best described as a secure and flexible foundation of

IoT services for connectivity, device and data management11. Pelion abstracts the

complexities associated with device and data management that are often associated

with IoT devices and solutions. Pelion provides several key features to accelerate

your solution:

1. Secure management capabilities
You can securely manage your devices to onboard them when they are deployed in the

field, enable secure communication with your preferred cloud vendor and even manage

firmware updates. You are even able to manage the full lifecycle of the device from

onboarding to decommissioning.

2. Easily manage data
With the massive amounts of data generated by IoT devices, you need to be able to

sift through that data to decrease time and the cost to utilize the data and maximize

the companies’ opportunities.

Figure 8 – The CMSIS-Zone configuration allows a developer to partition their system

resources across multiple projects and processors (Image source: Arm8).

https://www.arm.com/products/iot/pelion-iot-platform
https://www.arm.com/products/iot/pelion-iot-platform

17

3. Connect across the world
Devices across multiple networks around the globe can all be managed within a single

environment. You can manage important connectivity issues such as auto-deployments,

device operations and of course billing.

Using TF-M, CMSIS, CMSIS-Zone and Pelion will allow you to quickly and efficiently

get your security architecture implemented on your TrustZone enabled microcontroller.

Certifying That a System is Secure
Once the software is implemented, it’s possible to certify both hardware and software to

the PSA in order to provide developers, but also consumers, assurance that industry best

practices have been followed when implementing the product.

The fourth step of PSA, PSA Certified, is an independent security evaluation scheme for

IoT chips, OSes and devices. It provides a much-needed scheme for constrained devices,

plus a common language that the whole industry can use and understand.

There are three levels to PSA Certified, which each increase the security robustness

that an IoT device might need:

PSA Certified Level 3 covers more

substantial, extensive attacks, such

as side-channel and perturbation.

PSA Certified Level 1 (a document

and declare with lab check) covers the

foundational security requirements,

considering the PSA Security Model

goals, plus government requirements.

PSA Certified Level 2 steps things up to

mid-level assurance and robustness with

time-limited white box testing.

18

Conclusion
Security is no longer optional for connected devices. Implementing a security

solution can seem intimidating at first, but there are numerous industry best practices

and standards that you can use when developing a secure product. To be successful

in such an endeavor, you need to follow an existing architecture that has not just the

steps but also the ecosystem to help support. When following the steps laid out by PSA,

security is simplified by allowing them to focus on the assets they need to protect and

the threats those assets face. The mantra of “security through isolation” can be adopted,

which will then lead you to focus your architecture on separating the code into secure

and non-secure code segments.

To get started developing secure software for your device, explore the resources below:

TrustZone

 TrustZone webpage

PSA

 PSA webpage

 Whitepaper: Platform Security Architecture

 Webinar: Platform Security Architecture

 Arm’s guide to threat modelling

 Other PSA resources: www.arm.com/psa-resources

CMSIS

 CMSIS webpage

 Blog: CMSIS: A success story

 Blog: What are CMSIS software components?

 Blog: Validating your IoT system with PSA and MDK

 Blog: Configuring Armv8-M systems with CMSIS-Zone

Trusted Firmware-M

 TF-M webpage

https://developer.arm.com/trustzone-m
https://www.psacertified.org
https://pages.arm.com/PSA-Building-a-secure-IoT.html
https://pages.arm.com/webinar-getting-started-with-the-platform-security-architecture.html
https://community.arm.com/iot/b/blog/posts/five-steps-to-successful-threat-modelling
https://developer.arm.com/architectures/security-architectures/platform-security-architecture
https://developer.arm.com/tools-and-software/embedded/cmsis
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/cmsis-a-success-story
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/what-are-cmsis-software-components
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/validating-your-iot-system-with-psa-and-mdk
https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone
http://developer.trustedfirmware.org

19

References

1) https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
2) https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-

pacemakers-patient-death-fears-fda-firmware-update
3) https://www.wired.com/story/medtronic-insulin-pump-hack-app/
4) https://www.cnn.com/2019/07/24/tech/facebook-ftc-settlement/index.html
5) https://developer.arm.com/architectures/security-architectures/platform-security-

architecture
6) www.cypress.com/psoc6security
7) https://developer.arm.com/tools-and-software/open-source-software/firmware/

trusted-firmware
8) https://arm-software.github.io/CMSIS_5/General/html/index.html
9) https://community.arm.com/developer/tools-software/tools/b/tools-software-

ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone
10) https://arm-software.github.io/CMSIS-Zone/index.html
11) https://www.arm.com/products/iot/pelion-iot-platform

All brand names or product names are the property of their respective holders. Neither the whole nor any part of the information
contained in, or the product described in, this document may be adapted or reproduced in any material form except with the prior
written permission of the copyright holder. The product described in this document is subject to continuous developments and
improvements. All particulars of the product and its use contained in this document are given in good faith. All warranties implied
or expressed, including but not limited to implied warranties of satisfactory quality or fitness for purpose are excluded. This document
is intended only to provide information to the reader about the product. To the extent permitted by local laws Arm shall not be liable
for any loss or damage arising from the use of any information in this document or any error or omission in such information.

 © Arm Ltd. 2019

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.theguardian.com/technology/2017/aug/31/hacking-risk-recall-pacemakers-patient-death-fears-fda-firmware-update
https://www.wired.com/story/medtronic-insulin-pump-hack-app/
https://www.cnn.com/2019/07/24/tech/facebook-ftc-settlement/index.html
 https://developer.arm.com/architectures/security-architectures/platform-security-architecture
 https://developer.arm.com/architectures/security-architectures/platform-security-architecture
http://www.cypress.com/psoc6security
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware
https://arm-software.github.io/CMSIS_5/General/html/index.html
 https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone
 https://community.arm.com/developer/tools-software/tools/b/tools-software-ides-blog/posts/configuring-armv8-m-systems-with-cmsis-zone
https://arm-software.github.io/CMSIS-Zone/index.html
https://www.arm.com/products/iot/pelion-iot-platform

20

